Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsprs Structured version   Visualization version   GIF version

Theorem drsprs 16759
 Description: A directed set is a preset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
drsprs (𝐾 ∈ Dirset → 𝐾 ∈ Preset )

Proof of Theorem drsprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2610 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2isdrs 16757 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ (Base‘𝐾) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑧𝑦(le‘𝐾)𝑧)))
43simp1bi 1069 1 (𝐾 ∈ Dirset → 𝐾 ∈ Preset )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775   Preset cpreset 16749  Dirsetcdrs 16750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-drs 16752 This theorem is referenced by:  drsdirfi  16761  isdrs2  16762
 Copyright terms: Public domain W3C validator