Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 = { 0 }) → 𝑎 = { 0 }) |
2 | 1 | orcd 406 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵)) |
3 | | drngring 18577 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
4 | 3 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring) |
5 | | simplr 788 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ∈ 𝑈) |
6 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 }) |
7 | | drngnidl.u |
. . . . . . . . . . 11
⊢ 𝑈 = (LIdeal‘𝑅) |
8 | | drngnidl.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
9 | 7, 8 | lidlnz 19049 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ∧ 𝑎 ≠ { 0 }) → ∃𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
10 | 4, 5, 6, 9 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
11 | | simpll 786 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑅 ∈
DivRing) |
12 | | drngnidl.b |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 = (Base‘𝑅) |
13 | 12, 7 | lidlss 19031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝐵) |
14 | 13 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) → 𝑎 ⊆ 𝐵) |
15 | 14 | sselda 3568 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ 𝐵) |
16 | 15 | adantrr 749 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑏 ∈ 𝐵) |
17 | | simprr 792 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑏 ≠ 0 ) |
18 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) |
19 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝑅) = (1r‘𝑅) |
20 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(invr‘𝑅) = (invr‘𝑅) |
21 | 12, 8, 18, 19, 20 | drnginvrl 18589 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) →
(((invr‘𝑅)‘𝑏)(.r‘𝑅)𝑏) = (1r‘𝑅)) |
22 | 11, 16, 17, 21 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) →
(((invr‘𝑅)‘𝑏)(.r‘𝑅)𝑏) = (1r‘𝑅)) |
23 | 3 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑅 ∈ Ring) |
24 | | simplr 788 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑎 ∈ 𝑈) |
25 | 12, 8, 20 | drnginvrcl 18587 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) →
((invr‘𝑅)‘𝑏) ∈ 𝐵) |
26 | 11, 16, 17, 25 | syl3anc 1318 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) →
((invr‘𝑅)‘𝑏) ∈ 𝐵) |
27 | | simprl 790 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) → 𝑏 ∈ 𝑎) |
28 | 7, 12, 18 | lidlmcl 19038 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈) ∧ (((invr‘𝑅)‘𝑏) ∈ 𝐵 ∧ 𝑏 ∈ 𝑎)) → (((invr‘𝑅)‘𝑏)(.r‘𝑅)𝑏) ∈ 𝑎) |
29 | 23, 24, 26, 27, 28 | syl22anc 1319 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) →
(((invr‘𝑅)‘𝑏)(.r‘𝑅)𝑏) ∈ 𝑎) |
30 | 22, 29 | eqeltrrd 2689 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ (𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 )) →
(1r‘𝑅)
∈ 𝑎) |
31 | 30 | rexlimdvaa 3014 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) → (∃𝑏 ∈ 𝑎 𝑏 ≠ 0 →
(1r‘𝑅)
∈ 𝑎)) |
32 | 31 | imp 444 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ ∃𝑏 ∈ 𝑎 𝑏 ≠ 0 ) →
(1r‘𝑅)
∈ 𝑎) |
33 | 10, 32 | syldan 486 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) →
(1r‘𝑅)
∈ 𝑎) |
34 | 7, 12, 19 | lidl1el 19039 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈) → ((1r‘𝑅) ∈ 𝑎 ↔ 𝑎 = 𝐵)) |
35 | 3, 34 | sylan 487 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) → ((1r‘𝑅) ∈ 𝑎 ↔ 𝑎 = 𝐵)) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) →
((1r‘𝑅)
∈ 𝑎 ↔ 𝑎 = 𝐵)) |
37 | 33, 36 | mpbid 221 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵) |
38 | 37 | olcd 407 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵)) |
39 | 2, 38 | pm2.61dane 2869 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵)) |
40 | | vex 3176 |
. . . . . 6
⊢ 𝑎 ∈ V |
41 | 40 | elpr 4146 |
. . . . 5
⊢ (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵)) |
42 | 39, 41 | sylibr 223 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈) → 𝑎 ∈ {{ 0 }, 𝐵}) |
43 | 42 | ex 449 |
. . 3
⊢ (𝑅 ∈ DivRing → (𝑎 ∈ 𝑈 → 𝑎 ∈ {{ 0 }, 𝐵})) |
44 | 43 | ssrdv 3574 |
. 2
⊢ (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵}) |
45 | 7, 8 | lidl0 19040 |
. . . 4
⊢ (𝑅 ∈ Ring → { 0 } ∈
𝑈) |
46 | 7, 12 | lidl1 19041 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) |
47 | | snex 4835 |
. . . . . 6
⊢ { 0 } ∈
V |
48 | | fvex 6113 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
49 | 12, 48 | eqeltri 2684 |
. . . . . 6
⊢ 𝐵 ∈ V |
50 | 47, 49 | prss 4291 |
. . . . 5
⊢ (({ 0 } ∈
𝑈 ∧ 𝐵 ∈ 𝑈) ↔ {{ 0 }, 𝐵} ⊆ 𝑈) |
51 | 50 | bicomi 213 |
. . . 4
⊢ ({{ 0 }, 𝐵} ⊆ 𝑈 ↔ ({ 0 } ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) |
52 | 45, 46, 51 | sylanbrc 695 |
. . 3
⊢ (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈) |
53 | 3, 52 | syl 17 |
. 2
⊢ (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈) |
54 | 44, 53 | eqssd 3585 |
1
⊢ (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵}) |