MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz Structured version   Visualization version   GIF version

Theorem dprdcntz 18230
Description: The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz.3 (𝜑𝑋𝐼)
dprdcntz.4 (𝜑𝑌𝐼)
dprdcntz.5 (𝜑𝑋𝑌)
dprdcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdcntz (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))

Proof of Theorem dprdcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz.4 . . 3 (𝜑𝑌𝐼)
2 dprdcntz.5 . . . 4 (𝜑𝑋𝑌)
32necomd 2837 . . 3 (𝜑𝑌𝑋)
4 eldifsn 4260 . . 3 (𝑌 ∈ (𝐼 ∖ {𝑋}) ↔ (𝑌𝐼𝑌𝑋))
51, 3, 4sylanbrc 695 . 2 (𝜑𝑌 ∈ (𝐼 ∖ {𝑋}))
6 dprdcntz.3 . . 3 (𝜑𝑋𝐼)
7 dprdcntz.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
8 dprdcntz.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
97, 8dprddomcld 18223 . . . . . . 7 (𝜑𝐼 ∈ V)
10 dprdcntz.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
11 eqid 2610 . . . . . . . 8 (0g𝐺) = (0g𝐺)
12 eqid 2610 . . . . . . . 8 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1310, 11, 12dmdprd 18220 . . . . . . 7 ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
149, 8, 13syl2anc 691 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
157, 14mpbid 221 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})))
1615simp3d 1068 . . . 4 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))
17 simpl 472 . . . . 5 ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
1817ralimi 2936 . . . 4 (∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
1916, 18syl 17 . . 3 (𝜑 → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
20 sneq 4135 . . . . . 6 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2120difeq2d 3690 . . . . 5 (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
22 fveq2 6103 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
2322sseq1d 3595 . . . . 5 (𝑥 = 𝑋 → ((𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
2421, 23raleqbidv 3129 . . . 4 (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
2524rspcv 3278 . . 3 (𝑋𝐼 → (∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
266, 19, 25sylc 63 . 2 (𝜑 → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)))
27 fveq2 6103 . . . . 5 (𝑦 = 𝑌 → (𝑆𝑦) = (𝑆𝑌))
2827fveq2d 6107 . . . 4 (𝑦 = 𝑌 → (𝑍‘(𝑆𝑦)) = (𝑍‘(𝑆𝑌)))
2928sseq2d 3596 . . 3 (𝑦 = 𝑌 → ((𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌))))
3029rspcv 3278 . 2 (𝑌 ∈ (𝐼 ∖ {𝑋}) → (∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)) → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌))))
315, 26, 30sylc 63 1 (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  {csn 4125   cuni 4372   class class class wbr 4583  dom cdm 5038  cima 5041  wf 5800  cfv 5804  0gc0g 15923  mrClscmrc 16066  Grpcgrp 17245  SubGrpcsubg 17411  Cntzccntz 17571   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-ixp 7795  df-dprd 18217
This theorem is referenced by:  dprdfcntz  18237  dprdfadd  18242  dprdres  18250  dprdss  18251  dprdf1o  18254  dprdcntz2  18260  dprd2da  18264  dmdprdsplit2lem  18267
  Copyright terms: Public domain W3C validator