Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dpjghm2 | Structured version Visualization version GIF version |
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjghm2 | ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
4 | dpjlid.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
5 | 1, 2, 3, 4 | dpjghm 18285 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
6 | 1, 2 | dprdf2 18229 | . . . 4 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
7 | 6, 4 | ffvelrnd 6268 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
8 | 1, 2, 3, 4 | dpjf 18279 | . . . 4 ⊢ (𝜑 → (𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋)) |
9 | frn 5966 | . . . 4 ⊢ ((𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋) → ran (𝑃‘𝑋) ⊆ (𝑆‘𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑃‘𝑋) ⊆ (𝑆‘𝑋)) |
11 | eqid 2610 | . . . 4 ⊢ (𝐺 ↾s (𝑆‘𝑋)) = (𝐺 ↾s (𝑆‘𝑋)) | |
12 | 11 | resghm2b 17501 | . . 3 ⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ ran (𝑃‘𝑋) ⊆ (𝑆‘𝑋)) → ((𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋))))) |
13 | 7, 10, 12 | syl2anc 691 | . 2 ⊢ (𝜑 → ((𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋))))) |
14 | 5, 13 | mpbid 221 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 class class class wbr 4583 dom cdm 5038 ran crn 5039 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↾s cress 15696 SubGrpcsubg 17411 GrpHom cghm 17480 DProd cdprd 18215 dProjcdpj 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-gsum 15926 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-ghm 17481 df-gim 17524 df-cntz 17573 df-oppg 17599 df-lsm 17874 df-pj1 17875 df-cmn 18018 df-dprd 18217 df-dpj 18218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |