MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex Structured version   Visualization version   GIF version

Theorem domssex 8006
Description: Weakening of domssex 8006 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex (𝐴𝐵 → ∃𝑥(𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domssex
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 7852 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 reldom 7847 . . 3 Rel ≼
32brrelex2i 5083 . 2 (𝐴𝐵𝐵 ∈ V)
4 vex 3176 . . . . . . . 8 𝑓 ∈ V
5 f1stres 7081 . . . . . . . . . 10 (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝑓)
65a1i 11 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝑓))
7 difexg 4735 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
87adantl 481 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝐵 ∖ ran 𝑓) ∈ V)
9 snex 4835 . . . . . . . . . 10 {𝒫 ran 𝐴} ∈ V
10 xpexg 6858 . . . . . . . . . 10 (((𝐵 ∖ ran 𝑓) ∈ V ∧ {𝒫 ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V)
118, 9, 10sylancl 693 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V)
12 fex2 7014 . . . . . . . . 9 (((1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝑓) ∧ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝑓) ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V)
136, 11, 8, 12syl3anc 1318 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V)
14 unexg 6857 . . . . . . . 8 ((𝑓 ∈ V ∧ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
154, 13, 14sylancr 694 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
16 cnvexg 7005 . . . . . . 7 ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
1715, 16syl 17 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
18 rnexg 6990 . . . . . 6 ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V → ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
1917, 18syl 17 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
20 simpl 472 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝑓:𝐴1-1𝐵)
21 f1dm 6018 . . . . . . . . . 10 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
224dmex 6991 . . . . . . . . . 10 dom 𝑓 ∈ V
2321, 22syl6eqelr 2697 . . . . . . . . 9 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
2423adantr 480 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ∈ V)
25 simpr 476 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐵 ∈ V)
26 eqid 2610 . . . . . . . . 9 (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) = (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))
2726domss2 8004 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴)))
2820, 24, 25, 27syl3anc 1318 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴)))
2928simp2d 1067 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
3028simp1d 1066 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
31 f1oen3g 7857 . . . . . . 7 (((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V ∧ (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))) → 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
3217, 30, 31syl2anc 691 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
3329, 32jca 553 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
34 sseq2 3590 . . . . . . 7 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → (𝐴𝑥𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
35 breq2 4587 . . . . . . 7 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → (𝐵𝑥𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
3634, 35anbi12d 743 . . . . . 6 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))))
3736spcegv 3267 . . . . 5 (ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V → ((𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))) → ∃𝑥(𝐴𝑥𝐵𝑥)))
3819, 33, 37sylc 63 . . . 4 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ∃𝑥(𝐴𝑥𝐵𝑥))
3938ex 449 . . 3 (𝑓:𝐴1-1𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴𝑥𝐵𝑥)))
4039exlimiv 1845 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴𝑥𝐵𝑥)))
411, 3, 40sylc 63 1 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108  {csn 4125   cuni 4372   class class class wbr 4583   I cid 4948   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  1st c1st 7057  cen 7838  cdom 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060  df-en 7842  df-dom 7843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator