MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Structured version   Visualization version   GIF version

Theorem domnchr 19699
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))

Proof of Theorem domnchr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2782 . . 3 ((chr‘𝑅) ≠ 0 ↔ ¬ (chr‘𝑅) = 0)
2 domnring 19117 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
3 eqid 2610 . . . . . . . . . . 11 (chr‘𝑅) = (chr‘𝑅)
43chrcl 19693 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
52, 4syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → (chr‘𝑅) ∈ ℕ0)
65adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ0)
7 simpr 476 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 0)
8 eldifsn 4260 . . . . . . . 8 ((chr‘𝑅) ∈ (ℕ0 ∖ {0}) ↔ ((chr‘𝑅) ∈ ℕ0 ∧ (chr‘𝑅) ≠ 0))
96, 7, 8sylanbrc 695 . . . . . . 7 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℕ0 ∖ {0}))
10 dfn2 11182 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
119, 10syl6eleqr 2699 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ)
12 domnnzr 19116 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
13 nzrring 19082 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
14 chrnzr 19697 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1513, 14syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1615ibi 255 . . . . . . . 8 (𝑅 ∈ NzRing → (chr‘𝑅) ≠ 1)
1712, 16syl 17 . . . . . . 7 (𝑅 ∈ Domn → (chr‘𝑅) ≠ 1)
1817adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 1)
19 eluz2b3 11638 . . . . . 6 ((chr‘𝑅) ∈ (ℤ‘2) ↔ ((chr‘𝑅) ∈ ℕ ∧ (chr‘𝑅) ≠ 1))
2011, 18, 19sylanbrc 695 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℤ‘2))
212ad2antrr 758 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
22 eqid 2610 . . . . . . . . . . . . 13 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2322zrhrhm 19679 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
2421, 23syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
25 simprl 790 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
26 simprr 792 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
27 zringbas 19643 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
28 zringmulr 19646 . . . . . . . . . . . 12 · = (.r‘ℤring)
29 eqid 2610 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3027, 28, 29rhmmul 18550 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3124, 25, 26, 30syl3anc 1318 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3231eqeq1d 2612 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅)))
33 simpll 786 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Domn)
34 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
3527, 34rhmf 18549 . . . . . . . . . . . 12 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3624, 35syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3736, 25ffvelrnd 6268 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅))
3836, 26ffvelrnd 6268 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅))
39 eqid 2610 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4034, 29, 39domneq0 19118 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4133, 37, 38, 40syl3anc 1318 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4232, 41bitrd 267 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4342biimpd 218 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) → (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
44 zmulcl 11303 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
4544adantl 481 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
463, 22, 39chrdvds 19695 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 · 𝑦) ∈ ℤ) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
4721, 45, 46syl2anc 691 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
483, 22, 39chrdvds 19695 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
4921, 25, 48syl2anc 691 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
503, 22, 39chrdvds 19695 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5121, 26, 50syl2anc 691 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5249, 51orbi12d 742 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
5343, 47, 523imtr4d 282 . . . . . 6 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
5453ralrimivva 2954 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
55 isprm6 15264 . . . . 5 ((chr‘𝑅) ∈ ℙ ↔ ((chr‘𝑅) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))))
5620, 54, 55sylanbrc 695 . . . 4 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℙ)
5756ex 449 . . 3 (𝑅 ∈ Domn → ((chr‘𝑅) ≠ 0 → (chr‘𝑅) ∈ ℙ))
581, 57syl5bir 232 . 2 (𝑅 ∈ Domn → (¬ (chr‘𝑅) = 0 → (chr‘𝑅) ∈ ℙ))
5958orrd 392 1 (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  {csn 4125   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cdvds 14821  cprime 15223  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Ringcrg 18370   RingHom crh 18535  NzRingcnzr 19078  Domncdomn 19101  ringzring 19637  ℤRHomczrh 19667  chrcchr 19669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-od 17771  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-nzr 19079  df-domn 19105  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-chr 19673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator