Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2 Structured version   Visualization version   GIF version

Theorem dom2 7884
 Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
Hypotheses
Ref Expression
dom2.1 (𝑥𝐴𝐶𝐵)
dom2.2 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
Assertion
Ref Expression
dom2 (𝐵𝑉𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dom2
StepHypRef Expression
1 eqid 2610 . 2 𝐴 = 𝐴
2 dom2.1 . . . 4 (𝑥𝐴𝐶𝐵)
32a1i 11 . . 3 (𝐴 = 𝐴 → (𝑥𝐴𝐶𝐵))
4 dom2.2 . . . 4 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
54a1i 11 . . 3 (𝐴 = 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
63, 5dom2d 7882 . 2 (𝐴 = 𝐴 → (𝐵𝑉𝐴𝐵))
71, 6ax-mp 5 1 (𝐵𝑉𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583   ≼ cdom 7839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-dom 7843 This theorem is referenced by:  infpwfidom  8734  rpnnen1lem6  11695  rpnnen1OLD  11701  rpnnen2lem12  14793  tgdom  20593  vitali  23188  rpnnen3  36617
 Copyright terms: Public domain W3C validator