Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca2N Structured version   Visualization version   GIF version

Theorem doca2N 35433
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h 𝐻 = (LHyp‘𝐾)
doca2.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
doca2.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
doca2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))

Proof of Theorem doca2N
StepHypRef Expression
1 hlol 33666 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ OL)
21ad2antrr 758 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OL)
3 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
4 doca2.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
5 doca2.i . . . . . . . . . . . . 13 𝐼 = ((DIsoA‘𝐾)‘𝑊)
63, 4, 5diadmclN 35344 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
73, 4lhpbase 34302 . . . . . . . . . . . . 13 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87ad2antlr 759 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑊 ∈ (Base‘𝐾))
9 eqid 2610 . . . . . . . . . . . . 13 (join‘𝐾) = (join‘𝐾)
10 eqid 2610 . . . . . . . . . . . . 13 (meet‘𝐾) = (meet‘𝐾)
11 eqid 2610 . . . . . . . . . . . . 13 (oc‘𝐾) = (oc‘𝐾)
123, 9, 10, 11oldmm1 33522 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
132, 6, 8, 12syl3anc 1318 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)))
1413oveq1d 6564 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
1514eqcomd 2616 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊))
1615fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)))
17 hllat 33668 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad2antrr 758 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ Lat)
193, 10latmcl 16875 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
2018, 6, 8, 19syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
213, 9, 10, 11oldmm2 33523 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
222, 20, 8, 21syl3anc 1318 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2316, 22eqtrd 2644 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
2423oveq1d 6564 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)))
25 hlop 33667 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2625ad2antrr 758 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OP)
273, 11opoccl 33499 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2826, 8, 27syl2anc 691 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
293, 9latjass 16918 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
3018, 20, 28, 28, 29syl13anc 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))))
313, 9latjidm 16897 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3218, 28, 31syl2anc 691 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
3332oveq2d 6565 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)(((oc‘𝐾)‘𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3430, 33eqtrd 2644 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3524, 34eqtrd 2644 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊)) = ((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊)))
3635oveq1d 6564 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
37 hloml 33662 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
3837ad2antrr 758 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝐾 ∈ OML)
39 eqid 2610 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
403, 39, 10latmle2 16900 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
4118, 6, 8, 40syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
423, 39, 9, 10, 11omlspjN 33566 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋(meet‘𝐾)𝑊)(le‘𝐾)𝑊) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4338, 20, 8, 41, 42syl121anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((𝑋(meet‘𝐾)𝑊)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋(meet‘𝐾)𝑊))
4439, 4, 5diadmleN 35345 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
453, 39, 10latleeqm1 16902 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4618, 6, 8, 45syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
4744, 46mpbid 221 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
4836, 43, 473eqtrrd 2649 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 = ((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
4948fveq2d 6107 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
503, 11opoccl 33499 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
5126, 6, 50syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
523, 9latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
5318, 51, 28, 52syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
543, 10latmcl 16875 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
5518, 53, 8, 54syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
563, 39, 10latmle2 16900 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
5718, 53, 8, 56syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
583, 39, 4, 5diaeldm 35343 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
5958adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
6055, 57, 59mpbir2and 959 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
61 eqid 2610 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
62 doca2.n . . . 4 = ((ocA‘𝐾)‘𝑊)
639, 10, 11, 4, 61, 5, 62diaocN 35432 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
6460, 63syldan 486 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
659, 10, 11, 4, 61, 5, 62diaocN 35432 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = ( ‘(𝐼𝑋)))
6665fveq2d 6107 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘(𝐼‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ( ‘( ‘(𝐼𝑋))))
6749, 64, 663eqtrrd 2649 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ‘( ‘(𝐼𝑋))) = (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  joincjn 16767  meetcmee 16768  Latclat 16868  OPcops 33477  OLcol 33479  OMLcoml 33480  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  DIsoAcdia 35335  ocAcocaN 35426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-cmtN 33482  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-disoa 35336  df-docaN 35427
This theorem is referenced by:  doca3N  35434
  Copyright terms: Public domain W3C validator