Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnizphlfeqhlf Structured version   Visualization version   GIF version

Theorem dnizphlfeqhlf 31636
Description: The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
Hypotheses
Ref Expression
dnizphlfeqhlf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnizphlfeqhlf.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
dnizphlfeqhlf (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnizphlfeqhlf
StepHypRef Expression
1 dnizphlfeqhlf.1 . . . . 5 (𝜑𝐴 ∈ ℤ)
21zred 11358 . . . 4 (𝜑𝐴 ∈ ℝ)
3 halfre 11123 . . . . 5 (1 / 2) ∈ ℝ
43a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 9948 . . 3 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
6 dnizphlfeqhlf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
76dnival 31631 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
85, 7syl 17 . 2 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))))
92recnd 9947 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
104recnd 9947 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
119, 10, 10addassd 9941 . . . . . . . 8 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + ((1 / 2) + (1 / 2))))
12 1cnd 9935 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
13122halvesd 11155 . . . . . . . . 9 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
1413oveq2d 6565 . . . . . . . 8 (𝜑 → (𝐴 + ((1 / 2) + (1 / 2))) = (𝐴 + 1))
1511, 14eqtrd 2644 . . . . . . 7 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) = (𝐴 + 1))
161peano2zd 11361 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℤ)
1715, 16eqeltrd 2688 . . . . . 6 (𝜑 → ((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ)
18 flid 12471 . . . . . 6 (((𝐴 + (1 / 2)) + (1 / 2)) ∈ ℤ → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
1917, 18syl 17 . . . . 5 (𝜑 → (⌊‘((𝐴 + (1 / 2)) + (1 / 2))) = ((𝐴 + (1 / 2)) + (1 / 2)))
2019oveq1d 6564 . . . 4 (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (((𝐴 + (1 / 2)) + (1 / 2)) − (𝐴 + (1 / 2))))
219, 10addcld 9938 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ∈ ℂ)
2221, 10pncan2d 10273 . . . 4 (𝜑 → (((𝐴 + (1 / 2)) + (1 / 2)) − (𝐴 + (1 / 2))) = (1 / 2))
2320, 22eqtrd 2644 . . 3 (𝜑 → ((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2))) = (1 / 2))
2423fveq2d 6107 . 2 (𝜑 → (abs‘((⌊‘((𝐴 + (1 / 2)) + (1 / 2))) − (𝐴 + (1 / 2)))) = (abs‘(1 / 2)))
25 halfgt0 11125 . . . . 5 0 < (1 / 2)
26 0re 9919 . . . . . 6 0 ∈ ℝ
2726, 3ltlei 10038 . . . . 5 (0 < (1 / 2) → 0 ≤ (1 / 2))
2825, 27ax-mp 5 . . . 4 0 ≤ (1 / 2)
2928a1i 11 . . 3 (𝜑 → 0 ≤ (1 / 2))
304, 29absidd 14009 . 2 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
318, 24, 303eqtrd 2648 1 (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  cz 11254  cfl 12453  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  knoppndvlem9  31681
  Copyright terms: Public domain W3C validator