Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem10 Structured version   Visualization version   GIF version

Theorem dnibndlem10 31647
Description: Lemma for dnibnd 31651. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem10.1 (𝜑𝐴 ∈ ℝ)
dnibndlem10.2 (𝜑𝐵 ∈ ℝ)
dnibndlem10.3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem10 (𝜑 → 1 ≤ (𝐵𝐴))

Proof of Theorem dnibndlem10
StepHypRef Expression
1 1red 9934 . 2 (𝜑 → 1 ∈ ℝ)
2 dnibndlem10.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
3 halfre 11123 . . . . . . . . 9 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
52, 4readdcld 9948 . . . . . . 7 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
6 reflcl 12459 . . . . . . 7 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
87, 4jca 553 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
9 resubcl 10224 . . . . 5 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
108, 9syl 17 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
11 dnibndlem10.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211, 4readdcld 9948 . . . . . 6 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
13 reflcl 12459 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
1514, 4readdcld 9948 . . . 4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
1610, 15jca 553 . . 3 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ))
17 resubcl 10224 . . 3 ((((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ ∧ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ) → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
1816, 17syl 17 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ∈ ℝ)
192, 11resubcld 10337 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
2014recnd 9947 . . . . . . 7 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
21 2cnd 10970 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
224recnd 9947 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
2320, 21, 22addsubassd 10291 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))))
2423oveq1d 6564 . . . . 5 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
2521, 22subcld 10271 . . . . . 6 (𝜑 → (2 − (1 / 2)) ∈ ℂ)
2620, 25, 22pnpcand 10308 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (2 − (1 / 2))) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = ((2 − (1 / 2)) − (1 / 2)))
2721, 22, 22subsub4d 10302 . . . . . 6 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = (2 − ((1 / 2) + (1 / 2))))
28 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
29 2halves 11137 . . . . . . . . 9 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
3028, 29ax-mp 5 . . . . . . . 8 ((1 / 2) + (1 / 2)) = 1
3130a1i 11 . . . . . . 7 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
3231oveq2d 6565 . . . . . 6 (𝜑 → (2 − ((1 / 2) + (1 / 2))) = (2 − 1))
33 2m1e1 11012 . . . . . . 7 (2 − 1) = 1
3433a1i 11 . . . . . 6 (𝜑 → (2 − 1) = 1)
3527, 32, 343eqtrd 2648 . . . . 5 (𝜑 → ((2 − (1 / 2)) − (1 / 2)) = 1)
3624, 26, 353eqtrd 2648 . . . 4 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) = 1)
3736eqcomd 2616 . . 3 (𝜑 → 1 = ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
38 2re 10967 . . . . . . . 8 2 ∈ ℝ
3938a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
4014, 39readdcld 9948 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ)
4140, 4jca 553 . . . . 5 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
42 resubcl 10224 . . . . 5 ((((⌊‘(𝐴 + (1 / 2))) + 2) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
4341, 42syl 17 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ∈ ℝ)
44 dnibndlem10.3 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
4540, 7, 4, 44lesub1dd 10522 . . . 4 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) ≤ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))
4643, 10, 15, 45lesub1dd 10522 . . 3 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 2) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
4737, 46eqbrtrd 4605 . 2 (𝜑 → 1 ≤ (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))))
48 flle 12462 . . . . 5 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
495, 48syl 17 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2)))
507, 4, 2lesubaddd 10503 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵 ↔ (⌊‘(𝐵 + (1 / 2))) ≤ (𝐵 + (1 / 2))))
5149, 50mpbird 246 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ≤ 𝐵)
52 fllep1 12464 . . . . . 6 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5312, 52syl 17 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
5420, 22, 22addassd 9941 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))))
5531oveq2d 6565 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + ((1 / 2) + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5654, 55eqtrd 2644 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + 1))
5756eqcomd 2616 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5853, 57breqtrd 4609 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2)))
5911, 15, 4leadd1d 10500 . . . 4 (𝜑 → (𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ↔ (𝐴 + (1 / 2)) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) + (1 / 2))))
6058, 59mpbird 246 . . 3 (𝜑𝐴 ≤ ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
6110, 11, 2, 15, 51, 60le2subd 10526 . 2 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) ≤ (𝐵𝐴))
621, 18, 19, 47, 61letrd 10073 1 (𝜑 → 1 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455
This theorem is referenced by:  dnibndlem12  31649
  Copyright terms: Public domain W3C validator