Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem1 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 31651. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem1.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnibndlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dnibndlem1.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibndlem1 | ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem1.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | dnibndlem1.1 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
3 | 2 | dnival 31631 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
5 | dnibndlem1.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 2 | dnival 31631 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
8 | 4, 7 | oveq12d 6567 | . . 3 ⊢ (𝜑 → ((𝑇‘𝐵) − (𝑇‘𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
9 | 8 | fveq2d 6107 | . 2 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
10 | 9 | breq1d 4593 | 1 ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 1c1 9816 + caddc 9818 ≤ cle 9954 − cmin 10145 / cdiv 10563 2c2 10947 ⌊cfl 12453 abscabs 13822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 |
This theorem is referenced by: dnibndlem2 31639 dnibndlem9 31646 dnibndlem12 31649 |
Copyright terms: Public domain | W3C validator |