Proof of Theorem dmrelrnrel
Step | Hyp | Ref
| Expression |
1 | | dmrelrnrel.r |
. 2
⊢ (𝜑 → 𝐵𝑅𝐶) |
2 | | id 22 |
. . . 4
⊢ (𝜑 → 𝜑) |
3 | | dmrelrnrel.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
4 | | dmrelrnrel.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
5 | 2, 3, 4 | jca31 555 |
. . 3
⊢ (𝜑 → ((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴)) |
6 | | nfcv 2751 |
. . . . 5
⊢
Ⅎ𝑦𝐶 |
7 | | nfv 1830 |
. . . . . 6
⊢
Ⅎ𝑦 𝐵 ∈ 𝐴 |
8 | | dmrelrnrel.y |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜑 |
9 | 8, 7 | nfan 1816 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜑 ∧ 𝐵 ∈ 𝐴) |
10 | | nfv 1830 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝐶 ∈ 𝐴 |
11 | 9, 10 | nfan 1816 |
. . . . . . 7
⊢
Ⅎ𝑦((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) |
12 | | nfv 1830 |
. . . . . . 7
⊢
Ⅎ𝑦(𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)) |
13 | 11, 12 | nfim 1813 |
. . . . . 6
⊢
Ⅎ𝑦(((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶))) |
14 | 7, 13 | nfim 1813 |
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∈ 𝐴 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)))) |
15 | | eleq1 2676 |
. . . . . . . 8
⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
16 | 15 | anbi2d 736 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴))) |
17 | | breq2 4587 |
. . . . . . . 8
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) |
18 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑦 = 𝐶 → (𝐹‘𝑦) = (𝐹‘𝐶)) |
19 | 18 | breq2d 4595 |
. . . . . . . 8
⊢ (𝑦 = 𝐶 → ((𝐹‘𝐵)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝐵)𝑆(𝐹‘𝐶))) |
20 | 17, 19 | imbi12d 333 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦)) ↔ (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)))) |
21 | 16, 20 | imbi12d 333 |
. . . . . 6
⊢ (𝑦 = 𝐶 → ((((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦))) ↔ (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶))))) |
22 | 21 | imbi2d 329 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐵 ∈ 𝐴 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦)))) ↔ (𝐵 ∈ 𝐴 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)))))) |
23 | | nfcv 2751 |
. . . . . 6
⊢
Ⅎ𝑥𝐵 |
24 | | dmrelrnrel.x |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜑 |
25 | | nfv 1830 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐵 ∈ 𝐴 |
26 | 24, 25 | nfan 1816 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ 𝐵 ∈ 𝐴) |
27 | | nfv 1830 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
28 | 26, 27 | nfan 1816 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) |
29 | | nfv 1830 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦)) |
30 | 28, 29 | nfim 1813 |
. . . . . 6
⊢
Ⅎ𝑥(((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦))) |
31 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
32 | 31 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
33 | 32 | anbi1d 737 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴))) |
34 | | breq1 4586 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) |
35 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
36 | 35 | breq1d 4593 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥)𝑆(𝐹‘𝑦) ↔ (𝐹‘𝐵)𝑆(𝐹‘𝑦))) |
37 | 34, 36 | imbi12d 333 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)) ↔ (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦)))) |
38 | 33, 37 | imbi12d 333 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) ↔ (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦))))) |
39 | | dmrelrnrel.i |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
40 | 39 | r19.21bi 2916 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
41 | 40 | r19.21bi 2916 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
42 | 23, 30, 38, 41 | vtoclgf 3237 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐵𝑅𝑦 → (𝐹‘𝐵)𝑆(𝐹‘𝑦)))) |
43 | 6, 14, 22, 42 | vtoclgf 3237 |
. . . 4
⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶))))) |
44 | 4, 3, 43 | sylc 63 |
. . 3
⊢ (𝜑 → (((𝜑 ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)))) |
45 | 5, 44 | mpd 15 |
. 2
⊢ (𝜑 → (𝐵𝑅𝐶 → (𝐹‘𝐵)𝑆(𝐹‘𝐶))) |
46 | 1, 45 | mpd 15 |
1
⊢ (𝜑 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)) |