MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5261
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3178 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1877 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3176 . . . . . . 7 𝑦 ∈ V
43ideq 5196 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1932 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 263 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1764 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 220 . . 3 𝑦 𝑥 I 𝑦
9 vex 3176 . . . 4 𝑥 ∈ V
109eldm 5243 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 220 . 2 𝑥 ∈ dom I
121, 11mpgbir 1717 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173   class class class wbr 4583   I cid 4948  dom cdm 5038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-dm 5048
This theorem is referenced by:  dmv  5262  dmresi  5376  iprc  6993
  Copyright terms: Public domain W3C validator