Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcnvcnv Structured version   Visualization version   GIF version

Theorem dmcnvcnv 5269
 Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5502). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 5238 . 2 dom 𝐴 = ran 𝐴
2 df-rn 5049 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2633 1 dom 𝐴 = dom 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ◡ccnv 5037  dom cdm 5038  ran crn 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049 This theorem is referenced by:  resdm2  5542  f1cnvcnv  6022  trrelsuperrel2dg  36982
 Copyright terms: Public domain W3C validator