MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatval Structured version   Visualization version   GIF version

Theorem dmatval 20117
Description: The set of 𝑁 x 𝑁 diagonal matrices over (a ring) 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   𝑉(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.d . 2 𝐷 = (𝑁 DMat 𝑅)
2 df-dmat 20115 . . . 4 DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
4 oveq12 6558 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6107 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 dmatval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 dmatval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6106 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtri 2632 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
105, 9syl6eqr 2662 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 472 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 fveq2 6103 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 dmatval.0 . . . . . . . . . . 11 0 = (0g𝑅)
1412, 13syl6eqr 2662 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = 0 )
1615eqeq2d 2620 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g𝑟) ↔ (𝑖𝑚𝑗) = 0 ))
1716imbi2d 329 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1811, 17raleqbidv 3129 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1911, 18raleqbidv 3129 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2010, 19rabeqbidv 3168 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
2120adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
22 simpl 472 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
23 elex 3185 . . . 4 (𝑅𝑉𝑅 ∈ V)
2423adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
25 fvex 6113 . . . . 5 (Base‘𝐴) ∈ V
266, 25eqeltri 2684 . . . 4 𝐵 ∈ V
27 rabexg 4739 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
2826, 27mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
293, 21, 22, 24, 28ovmpt2d 6686 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 DMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
301, 29syl5eq 2656 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  Basecbs 15695  0gc0g 15923   Mat cmat 20032   DMat cdmat 20113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-dmat 20115
This theorem is referenced by:  dmatel  20118  dmatmulcl  20125  scmatdmat  20140  dmatbas  41986
  Copyright terms: Public domain W3C validator