Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Structured version   Visualization version   GIF version

Theorem djajN 35444
Description: Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k = (join‘𝐾)
djaj.h 𝐻 = (LHyp‘𝐾)
djaj.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaj.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djajN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))

Proof of Theorem djajN
StepHypRef Expression
1 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 758 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ Lat)
3 hlop 33667 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
43ad2antrr 758 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OP)
5 eqid 2610 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
6 djaj.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 djaj.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
85, 6, 7diadmclN 35344 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
98adantrr 749 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
10 eqid 2610 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
115, 10opoccl 33499 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
124, 9, 11syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾))
135, 6lhpbase 34302 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1413ad2antlr 759 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑊 ∈ (Base‘𝐾))
155, 10opoccl 33499 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
164, 14, 15syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
17 djaj.k . . . . . . . 8 = (join‘𝐾)
185, 17latjcl 16874 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
192, 12, 16, 18syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
20 eqid 2610 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
215, 20latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
222, 19, 14, 21syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
235, 6, 7diadmclN 35344 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
2423adantrl 748 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
255, 10opoccl 33499 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
264, 24, 25syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾))
275, 17latjcl 16874 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
282, 26, 16, 27syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
295, 20latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
302, 28, 14, 29syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
315, 20latmcl 16875 . . . . 5 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
322, 22, 30, 31syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
33 eqid 2610 . . . . 5 (le‘𝐾) = (le‘𝐾)
345, 33, 20latmle2 16900 . . . . . 6 ((𝐾 ∈ Lat ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
352, 22, 30, 34syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
365, 33, 20latmle2 16900 . . . . . 6 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
372, 28, 14, 36syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
385, 33, 2, 32, 30, 14, 35, 37lattrd 16881 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)
395, 33, 6, 7diaeldm 35343 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4039adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼 ↔ ((((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))(le‘𝐾)𝑊)))
4132, 38, 40mpbir2and 959 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼)
42 eqid 2610 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
43 eqid 2610 . . . 4 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
4417, 20, 10, 6, 42, 7, 43diaocN 35432 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
4541, 44syldan 486 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
46 hloml 33662 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OML)
4746ad2antrr 758 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OML)
485, 17latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
492, 9, 24, 48syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) ∈ (Base‘𝐾))
5033, 6, 7diadmleN 35345 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋(le‘𝐾)𝑊)
5150adantrr 749 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋(le‘𝐾)𝑊)
5233, 6, 7diadmleN 35345 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌(le‘𝐾)𝑊)
5352adantrl 748 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌(le‘𝐾)𝑊)
545, 33, 17latjle12 16885 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
552, 9, 24, 14, 54syl13anc 1320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋(le‘𝐾)𝑊𝑌(le‘𝐾)𝑊) ↔ (𝑋 𝑌)(le‘𝐾)𝑊))
5651, 53, 55mpbi2and 958 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌)(le‘𝐾)𝑊)
575, 33, 17, 20, 10omlspjN 33566 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)(le‘𝐾)𝑊) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
5847, 49, 14, 56, 57syl121anc 1323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = (𝑋 𝑌))
595, 17latjidm 16897 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
602, 16, 59syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘𝑊))
6160oveq2d 6565 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
625, 17latjass 16918 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
632, 49, 16, 16, 62syl13anc 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))))
64 hlol 33666 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
6564ad2antrr 758 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ OL)
665, 17, 20, 10oldmm2 33523 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
6765, 49, 14, 66syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)))
685, 17, 20, 10oldmj1 33526 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
6965, 9, 24, 68syl3anc 1318 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)))
705, 33, 20latleeqm1 16902 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
712, 9, 14, 70syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋(meet‘𝐾)𝑊) = 𝑋))
7251, 71mpbid 221 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋(meet‘𝐾)𝑊) = 𝑋)
7372fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑋))
745, 17, 20, 10oldmm1 33522 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7565, 9, 14, 74syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
7673, 75eqtr3d 2646 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑋) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
775, 33, 20latleeqm1 16902 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
782, 24, 14, 77syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(le‘𝐾)𝑊 ↔ (𝑌(meet‘𝐾)𝑊) = 𝑌))
7953, 78mpbid 221 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑌(meet‘𝐾)𝑊) = 𝑌)
8079fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘𝑌))
815, 17, 20, 10oldmm1 33522 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8265, 24, 14, 81syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑌(meet‘𝐾)𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8380, 82eqtr3d 2646 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘𝑌) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
8476, 83oveq12d 6567 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8569, 84eqtrd 2644 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(𝑋 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
8685oveq1d 6564 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
875, 20latmmdir 33540 . . . . . . . . . . . 12 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8865, 19, 28, 14, 87syl13anc 1320 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
8986, 88eqtrd 2644 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊) = (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
9089fveq2d 6107 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((oc‘𝐾)‘(((oc‘𝐾)‘(𝑋 𝑌))(meet‘𝐾)𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9167, 90eqtr3d 2646 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = ((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
9291oveq1d 6564 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9363, 92eqtr3d 2646 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑊))) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9461, 93eqtr3d 2646 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝑋 𝑌) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊)))
9594oveq1d 6564 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((𝑋 𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9658, 95eqtr3d 2646 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))
9796fveq2d 6107 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((((oc‘𝐾)‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))
98 simpl 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
996, 7diaclN 35357 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
10099adantrr 749 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ∈ ran 𝐼)
1016, 42, 7diaelrnN 35352 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ ran 𝐼) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
102100, 101syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
1036, 7diaclN 35357 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼𝑌) ∈ ran 𝐼)
104103adantrl 748 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ∈ ran 𝐼)
1056, 42, 7diaelrnN 35352 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑌) ∈ ran 𝐼) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
106104, 105syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))
107 djaj.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
1086, 42, 7, 43, 107djavalN 35442 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊) ∧ (𝐼𝑌) ⊆ ((LTrn‘𝐾)‘𝑊))) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
10998, 102, 106, 108syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
1105, 33, 20latmle2 16900 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1112, 19, 14, 110syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)
1125, 33, 6, 7diaeldm 35343 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
113112adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11422, 111, 113mpbir2and 959 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
1155, 33, 6, 7diaeldm 35343 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
116115adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ↔ (((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(le‘𝐾)𝑊)))
11730, 37, 116mpbir2and 959 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)
11820, 6, 7diameetN 35363 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼 ∧ ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊) ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
11998, 114, 117, 118syl12anc 1316 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))))
12017, 20, 10, 6, 42, 7, 43diaocN 35432 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
121120adantrr 749 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)))
12217, 20, 10, 6, 42, 7, 43diaocN 35432 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
123122adantrl 748 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) = (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))
124121, 123ineq12d 3777 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)) ∩ (𝐼‘((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
125119, 124eqtrd 2644 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊))) = ((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌))))
126125fveq2d 6107 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘(𝐼𝑋)) ∩ (((ocA‘𝐾)‘𝑊)‘(𝐼𝑌)))))
127109, 126eqtr4d 2647 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → ((𝐼𝑋)𝐽(𝐼𝑌)) = (((ocA‘𝐾)‘𝑊)‘(𝐼‘(((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)(meet‘𝐾)((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))(meet‘𝐾)𝑊)))))
12845, 97, 1273eqtr4d 2654 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋)𝐽(𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540   class class class wbr 4583  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  joincjn 16767  meetcmee 16768  Latclat 16868  OPcops 33477  OLcol 33479  OMLcoml 33480  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  DIsoAcdia 35335  ocAcocaN 35426  vAcdjaN 35438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-cmtN 33482  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-disoa 35336  df-docaN 35427  df-djaN 35439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator