Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divgcdoddALTV Structured version   Visualization version   GIF version

Theorem divgcdoddALTV 40131
Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
divgcdoddALTV ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))

Proof of Theorem divgcdoddALTV
StepHypRef Expression
1 divgcdodd 15260 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
2 nnz 11276 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 nnz 11276 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 gcddvds 15063 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
52, 3, 4syl2an 493 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
65simpld 474 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72, 3anim12i 588 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 nnne0 10930 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98neneqd 2787 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ¬ 𝐴 = 0)
109intnanrd 954 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1110adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 15062 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
137, 11, 12syl2anc 691 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 11357 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
1513nnne0d 10942 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
162adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
17 dvdsval2 14824 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
1814, 15, 16, 17syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
196, 18mpbid 221 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
2019biantrurd 528 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))))
215simprd 478 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
223adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
23 dvdsval2 14824 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2414, 15, 22, 23syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
2521, 24mpbid 221 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
2625biantrurd 528 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
2720, 26orbi12d 742 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))))
281, 27mpbid 221 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
29 isodd3 40103 . . 3 ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))))
30 isodd3 40103 . . 3 ((𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
3129, 30orbi12i 542 . 2 (((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ) ↔ (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) ∨ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3228, 31sylibr 223 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  0cc0 9815   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cdvds 14821   gcd cgcd 15054   Odd codd 40076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-odd 40078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator