MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Visualization version   GIF version

Theorem divcn 22479
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
divcn.k 𝐾 = (𝐽t (ℂ ∖ {0}))
Assertion
Ref Expression
divcn / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)

Proof of Theorem divcn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 10564 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 eldifsn 4260 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3 divval 10566 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 divrec 10580 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
53, 4eqtr3d 2646 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
653expb 1258 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
72, 6sylan2b 491 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
87mpt2eq3ia 6618 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
91, 8eqtri 2632 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
10 addcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
1110cnfldtopon 22396 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
1211a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
13 divcn.k . . . . 5 𝐾 = (𝐽t (ℂ ∖ {0}))
14 difss 3699 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
15 resttopon 20775 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1612, 14, 15sylancl 693 . . . . 5 (⊤ → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1713, 16syl5eqel 2692 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘(ℂ ∖ {0})))
1812, 17cnmpt1st 21281 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1912, 17cnmpt2nd 21282 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
20 eqid 2610 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))
21 eldifsn 4260 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
22 reccl 10571 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (1 / 𝑧) ∈ ℂ)
2321, 22sylbi 206 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
2420, 23fmpti 6291 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ
25 eqid 2610 . . . . . . . . . 10 (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2)) = (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2))
2625reccn2 14175 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
27 ovres 6698 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (𝑥(abs ∘ − )𝑤))
28 eldifi 3694 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
29 eldifi 3694 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → 𝑤 ∈ ℂ)
30 eqid 2610 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 22384 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
32 abssub 13914 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
3331, 32eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3428, 29, 33syl2an 493 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3527, 34eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (abs‘(𝑤𝑥)))
3635breq1d 4593 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑥)) < 𝑢))
37 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥))
38 ovex 6577 . . . . . . . . . . . . . . . . 17 (1 / 𝑥) ∈ V
3937, 20, 38fvmpt 6191 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥))
40 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (1 / 𝑧) = (1 / 𝑤))
41 ovex 6577 . . . . . . . . . . . . . . . . 17 (1 / 𝑤) ∈ V
4240, 20, 41fvmpt 6191 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤) = (1 / 𝑤))
4339, 42oveqan12d 6568 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)))
44 eldifsn 4260 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
45 reccl 10571 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
4644, 45sylbi 206 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ ℂ)
47 eldifsn 4260 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
48 reccl 10571 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℂ)
4947, 48sylbi 206 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → (1 / 𝑤) ∈ ℂ)
5030cnmetdval 22384 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑥) − (1 / 𝑤))))
51 abssub 13914 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑥) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5250, 51eqtrd 2644 . . . . . . . . . . . . . . . 16 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5346, 49, 52syl2an 493 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5443, 53eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5554breq1d 4593 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦 ↔ (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
5636, 55imbi12d 333 . . . . . . . . . . . 12 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5756ralbidva 2968 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) → (∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5857rexbidv 3034 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5958adantr 480 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
6026, 59mpbird 246 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))
6160rgen2 2958 . . . . . . 7 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)
62 cnxmet 22386 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 xmetres2 21976 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})))
6462, 14, 63mp2an 704 . . . . . . . 8 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0}))
65 eqid 2610 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))
6610cnfldtopn 22395 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
67 eqid 2610 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6865, 66, 67metrest 22139 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))))
6962, 14, 68mp2an 704 . . . . . . . . . 10 (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7013, 69eqtri 2632 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7170, 66metcn 22158 . . . . . . . 8 ((((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))))
7264, 62, 71mp2an 704 . . . . . . 7 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)))
7324, 61, 72mpbir2an 957 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)
7473a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽))
75 oveq2 6557 . . . . 5 (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦))
7612, 17, 19, 17, 74, 75cnmpt21 21284 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7710mulcn 22478 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7877a1i 11 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
7912, 17, 18, 76, 78cnmpt22f 21288 . . 3 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8079trud 1484 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
819, 80eqeltri 2684 1 / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wtru 1476  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cres 5040  ccom 5042  wf 5800  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  cc 9813  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  +crp 11708  abscabs 13822  t crest 15904  TopOpenctopn 15905  ∞Metcxmt 19552  MetOpencmopn 19557  fldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937
This theorem is referenced by:  cdivcncf  22528  evth  22566  dvcnvlem  23543  lhop1lem  23580
  Copyright terms: Public domain W3C validator