MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgb Structured version   Visualization version   GIF version

Theorem divalgb 14965
Description: Express the division algorithm as stated in divalg 14964 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalgb
StepHypRef Expression
1 zsubcl 11296 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝑁𝑟) ∈ ℤ)
2 divides 14823 . . . . . . . . . . . 12 ((𝐷 ∈ ℤ ∧ (𝑁𝑟) ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
31, 2sylan2 490 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ)) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
433impb 1252 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
543com12 1261 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
6 zcn 11259 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 zcn 11259 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
8 zmulcl 11303 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
98zcnd 11359 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℂ)
10 subadd 10163 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
116, 7, 9, 10syl3an 1360 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
12 addcom 10101 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
137, 9, 12syl2an 493 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
14133adant1 1072 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1514eqeq1d 2612 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑟 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
1611, 15bitrd 267 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
17 eqcom 2617 . . . . . . . . . . . . . . . 16 ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑟))
18 eqcom 2617 . . . . . . . . . . . . . . . 16 (((𝑞 · 𝐷) + 𝑟) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑟))
1916, 17, 183bitr3g 301 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
20193expia 1259 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2120expcomd 453 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∈ ℤ → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))))
22213impia 1253 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2322imp 444 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2423rexbidva 3031 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
25243com23 1263 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
265, 25bitrd 267 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2726anbi2d 736 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
28 df-3an 1033 . . . . . . . . 9 ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2928rexbii 3023 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
30 r19.42v 3073 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3129, 30bitri 263 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3227, 31syl6rbbr 278 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟))))
33 anass 679 . . . . . 6 (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
3432, 33syl6bb 275 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
35343expa 1257 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
3635reubidva 3102 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
37 elnn0z 11267 . . . . . . 7 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
3837anbi1i 727 . . . . . 6 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
39 anass 679 . . . . . 6 (((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4038, 39bitri 263 . . . . 5 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4140eubii 2480 . . . 4 (∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
42 df-reu 2903 . . . 4 (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
43 df-reu 2903 . . . 4 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4441, 42, 433bitr4ri 292 . . 3 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))
4536, 44syl6bb 275 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
46453adant3 1074 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ∃!weu 2458  wne 2780  wrex 2897  ∃!wreu 2898   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  0cn0 11169  cz 11254  abscabs 13822  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-dvds 14822
This theorem is referenced by:  divalg2  14966
  Copyright terms: Public domain W3C validator