Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  distel Structured version   Visualization version   GIF version

Theorem distel 30953
Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 4773 and elirrv 8387.) (Contributed by Scott Fenton, 15-Dec-2010.)
Assertion
Ref Expression
distel (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)

Proof of Theorem distel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 4773 . . 3 𝑧 𝑥𝑧
2 df-ex 1696 . . . 4 (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥𝑧)
3 nfnae 2306 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 dveel1 2358 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥𝑧 → ∀𝑦 𝑥𝑧))
53, 4nf5d 2104 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥𝑧)
65nfnd 1769 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥𝑧)
7 elequ2 1991 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
87notbid 307 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦))
98a1i 11 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦)))
103, 6, 9cbvald 2265 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥𝑧 ↔ ∀𝑦 ¬ 𝑥𝑦))
1110notbid 307 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
122, 11syl5bb 271 . . 3 (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
131, 12mpbii 222 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥𝑦)
14 elirrv 8387 . . . . 5 ¬ 𝑦𝑦
15 elequ1 1984 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑦𝑥𝑦))
1614, 15mtbii 315 . . . 4 (𝑦 = 𝑥 → ¬ 𝑥𝑦)
1716alimi 1730 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥𝑦)
1817con3i 149 . 2 (¬ ∀𝑦 ¬ 𝑥𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1913, 18impbii 198 1 (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator