Step | Hyp | Ref
| Expression |
1 | | distop 20610 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) |
2 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) |
3 | | snelpwi 4839 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 → {𝑥} ∈ 𝒫 𝑋) |
4 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋) |
5 | 2, 4 | eqeltrd 2688 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋) |
6 | 5 | rexlimiva 3010 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋) |
7 | 6 | abssi 3640 |
. . . . . . . . 9
⊢ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋 |
8 | | simpl 472 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → 𝑢 = 𝑣) |
9 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
10 | 9 | sneqd 4137 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → {𝑥} = {𝑧}) |
11 | 8, 10 | eqeq12d 2625 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧})) |
12 | 11 | cbvrexdva 3154 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ↔ ∃𝑧 ∈ 𝑋 𝑣 = {𝑧})) |
13 | 12 | cbvabv 2734 |
. . . . . . . . . . 11
⊢ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧 ∈ 𝑋 𝑣 = {𝑧}} |
14 | 13 | dissnlocfin 21142 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋)) |
15 | | elpwg 4116 |
. . . . . . . . . 10
⊢ ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋)) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋)) |
17 | 7, 16 | mpbiri 247 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋) |
18 | 17 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋) |
19 | 14 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋)) |
20 | 18, 19 | elind 3760 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋))) |
21 | | simpll 786 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → 𝑋 ∈ 𝑉) |
22 | | simpr 476 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → 𝑋 = ∪ 𝑦) |
23 | 22 | eqcomd 2616 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → ∪ 𝑦 =
𝑋) |
24 | 13 | dissnref 21141 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) |
25 | 21, 23, 24 | syl2anc 691 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) |
26 | | breq1 4586 |
. . . . . . 7
⊢ (𝑧 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦)) |
27 | 26 | rspcev 3282 |
. . . . . 6
⊢ (({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋)) ∧ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋))𝑧Ref𝑦) |
28 | 20, 25, 27 | syl2anc 691 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦) |
29 | 28 | ex 449 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦)) |
30 | 29 | ralrimiva 2949 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦)) |
31 | | unipw 4845 |
. . . . 5
⊢ ∪ 𝒫 𝑋 = 𝑋 |
32 | 31 | eqcomi 2619 |
. . . 4
⊢ 𝑋 = ∪
𝒫 𝑋 |
33 | 32 | iscref 29239 |
. . 3
⊢
(𝒫 𝑋 ∈
CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦))) |
34 | 1, 30, 33 | sylanbrc 695 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫
𝑋)) |
35 | | ispcmp 29252 |
. 2
⊢
(𝒫 𝑋 ∈
Paracomp ↔ 𝒫 𝑋
∈ CovHasRef(LocFin‘𝒫 𝑋)) |
36 | 34, 35 | sylibr 223 |
1
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp) |