MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpr2 Structured version   Visualization version   GIF version

Theorem disjpr2 4194
Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
disjpr2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 4128 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21ineq2i 3773 . . 3 ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷}))
3 indi 3832 . . 3 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
42, 3eqtri 2632 . 2 ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
5 df-pr 4128 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65ineq1i 3772 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
7 indir 3834 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
86, 7eqtri 2632 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
9 disjsn2 4193 . . . . . . . 8 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
10 disjsn2 4193 . . . . . . . 8 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
119, 10anim12i 588 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
12 un00 3963 . . . . . . 7 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
1311, 12sylib 207 . . . . . 6 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
148, 13syl5eq 2656 . . . . 5 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
1514adantr 480 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
165ineq1i 3772 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
17 indir 3834 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
1816, 17eqtri 2632 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
19 disjsn2 4193 . . . . . . . 8 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
20 disjsn2 4193 . . . . . . . 8 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2119, 20anim12i 588 . . . . . . 7 ((𝐴𝐷𝐵𝐷) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
22 un00 3963 . . . . . . 7 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
2321, 22sylib 207 . . . . . 6 ((𝐴𝐷𝐵𝐷) → (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
2418, 23syl5eq 2656 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
2524adantl 481 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
2615, 25uneq12d 3730 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = (∅ ∪ ∅))
27 un0 3919 . . 3 (∅ ∪ ∅) = ∅
2826, 27syl6eq 2660 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = ∅)
294, 28syl5eq 2656 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wne 2780  cun 3538  cin 3539  c0 3874  {csn 4125  {cpr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128
This theorem is referenced by:  disjprsn  4196  funcnvqp  5866  funcnvqpOLD  5867  constr3lem4  26175  constr3lem6  26177
  Copyright terms: Public domain W3C validator