Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorsf Structured version   Visualization version   GIF version

Theorem disjorsf 28775
 Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
disjorsf.1 𝑥𝐴
Assertion
Ref Expression
disjorsf (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjorsf
StepHypRef Expression
1 disjorsf.1 . . 3 𝑥𝐴
2 nfcv 2751 . . 3 𝑖𝐵
3 nfcsb1v 3515 . . 3 𝑥𝑖 / 𝑥𝐵
4 csbeq1a 3508 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
51, 2, 3, 4cbvdisjf 28767 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
6 csbeq1 3502 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
76disjor 4567 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
85, 7bitri 263 1 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∨ wo 382   = wceq 1475  Ⅎwnfc 2738  ∀wral 2896  ⦋csb 3499   ∩ cin 3539  ∅c0 3874  Disj wdisj 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rmo 2904  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-in 3547  df-nul 3875  df-disj 4554 This theorem is referenced by:  disjif2  28776  disjdsct  28863
 Copyright terms: Public domain W3C validator