Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dishaus Structured version   Visualization version   GIF version

Theorem dishaus 20996
 Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
dishaus (𝐴𝑉 → 𝒫 𝐴 ∈ Haus)

Proof of Theorem dishaus
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20610 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 simplrl 796 . . . . . . 7 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑥𝐴)
32snssd 4281 . . . . . 6 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑥} ⊆ 𝐴)
4 snex 4835 . . . . . . 7 {𝑥} ∈ V
54elpw 4114 . . . . . 6 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
63, 5sylibr 223 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑥} ∈ 𝒫 𝐴)
7 simplrr 797 . . . . . . 7 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑦𝐴)
87snssd 4281 . . . . . 6 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑦} ⊆ 𝐴)
9 snex 4835 . . . . . . 7 {𝑦} ∈ V
109elpw 4114 . . . . . 6 ({𝑦} ∈ 𝒫 𝐴 ↔ {𝑦} ⊆ 𝐴)
118, 10sylibr 223 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → {𝑦} ∈ 𝒫 𝐴)
12 vsnid 4156 . . . . . 6 𝑥 ∈ {𝑥}
1312a1i 11 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑥 ∈ {𝑥})
14 vsnid 4156 . . . . . 6 𝑦 ∈ {𝑦}
1514a1i 11 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝑦 ∈ {𝑦})
16 disjsn2 4193 . . . . . 6 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
1716adantl 481 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → ({𝑥} ∩ {𝑦}) = ∅)
18 eleq2 2677 . . . . . . 7 (𝑢 = {𝑥} → (𝑥𝑢𝑥 ∈ {𝑥}))
19 ineq1 3769 . . . . . . . 8 (𝑢 = {𝑥} → (𝑢𝑣) = ({𝑥} ∩ 𝑣))
2019eqeq1d 2612 . . . . . . 7 (𝑢 = {𝑥} → ((𝑢𝑣) = ∅ ↔ ({𝑥} ∩ 𝑣) = ∅))
2118, 203anbi13d 1393 . . . . . 6 (𝑢 = {𝑥} → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅)))
22 eleq2 2677 . . . . . . 7 (𝑣 = {𝑦} → (𝑦𝑣𝑦 ∈ {𝑦}))
23 ineq2 3770 . . . . . . . 8 (𝑣 = {𝑦} → ({𝑥} ∩ 𝑣) = ({𝑥} ∩ {𝑦}))
2423eqeq1d 2612 . . . . . . 7 (𝑣 = {𝑦} → (({𝑥} ∩ 𝑣) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
2522, 243anbi23d 1394 . . . . . 6 (𝑣 = {𝑦} → ((𝑥 ∈ {𝑥} ∧ 𝑦𝑣 ∧ ({𝑥} ∩ 𝑣) = ∅) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)))
2621, 25rspc2ev 3295 . . . . 5 (({𝑥} ∈ 𝒫 𝐴 ∧ {𝑦} ∈ 𝒫 𝐴 ∧ (𝑥 ∈ {𝑥} ∧ 𝑦 ∈ {𝑦} ∧ ({𝑥} ∩ {𝑦}) = ∅)) → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
276, 11, 13, 15, 17, 26syl113anc 1330 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
2827ex 449 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
2928ralrimivva 2954 . 2 (𝐴𝑉 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅)))
30 unipw 4845 . . . 4 𝒫 𝐴 = 𝐴
3130eqcomi 2619 . . 3 𝐴 = 𝒫 𝐴
3231ishaus 20936 . 2 (𝒫 𝐴 ∈ Haus ↔ (𝒫 𝐴 ∈ Top ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴(𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))))
331, 29, 32sylanbrc 695 1 (𝐴𝑉 → 𝒫 𝐴 ∈ Haus)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372  Topctop 20517  Hauscha 20922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373  df-top 20521  df-haus 20929 This theorem is referenced by:  ssoninhaus  31617
 Copyright terms: Public domain W3C validator