Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . 4
⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) |
2 | 1 | cbvitgv 23349 |
. . 3
⊢
∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠 |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠) |
4 | | elioore 12076 |
. . . . . 6
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
6 | | halfre 11123 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ → (1 / 2)
∈ ℝ) |
8 | | fzfid 12634 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ →
(1...𝑁) ∈
Fin) |
9 | | elfzelz 12213 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ) |
10 | 9 | zred 11358 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ) |
11 | 10 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
12 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ) |
13 | 11, 12 | remulcld 9949 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ) |
14 | 13 | recoscld 14713 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
15 | 8, 14 | fsumrecl 14312 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ →
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
16 | 7, 15 | readdcld 9948 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → ((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
17 | | pire 24014 |
. . . . . . . 8
⊢ π
∈ ℝ |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → π
∈ ℝ) |
19 | | pipos 24016 |
. . . . . . . . 9
⊢ 0 <
π |
20 | 17, 19 | gt0ne0ii 10443 |
. . . . . . . 8
⊢ π ≠
0 |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ (𝑠 ∈ ℝ → π ≠
0) |
22 | 16, 18, 21 | redivcld 10732 |
. . . . . 6
⊢ (𝑠 ∈ ℝ → (((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
23 | 5, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
24 | | eqid 2610 |
. . . . . 6
⊢ (𝑠 ∈ ℝ ↦ (((1 /
2) + Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
25 | 24 | fvmpt2 6200 |
. . . . 5
⊢ ((𝑠 ∈ ℝ ∧ (((1 / 2)
+ Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 /
2) + Σ𝑘 ∈
(1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
26 | 5, 23, 25 | syl2anc 691 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
27 | | dirkeritg.d |
. . . . . . . 8
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) ·
(sin‘(𝑥 /
2))))))) |
28 | | oveq1 6556 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π))) |
29 | 28 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) =
0)) |
30 | | oveq2 6557 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠)) |
31 | 30 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠))) |
32 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2)) |
33 | 32 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2))) |
34 | 33 | oveq2d 6565 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((2 · π) ·
(sin‘(𝑥 / 2))) = ((2
· π) · (sin‘(𝑠 / 2)))) |
35 | 31, 34 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) ·
(sin‘(𝑥 / 2)))) =
((sin‘((𝑛 + (1 / 2))
· 𝑠)) / ((2 ·
π) · (sin‘(𝑠 / 2))))) |
36 | 29, 35 | ifbieq2d 4061 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 ·
𝑛) + 1) / (2 ·
π)), ((sin‘((𝑛 +
(1 / 2)) · 𝑥)) / ((2
· π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 ·
𝑛) + 1) / (2 ·
π)), ((sin‘((𝑛 +
(1 / 2)) · 𝑠)) / ((2
· π) · (sin‘(𝑠 / 2)))))) |
37 | 36 | cbvmptv 4678 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑥)) / ((2 ·
π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2)))))) |
38 | 37 | mpteq2i 4669 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦
if((𝑥 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑥)) / ((2 ·
π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
39 | 27, 38 | eqtri 2632 |
. . . . . . 7
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
40 | | dirkeritg.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
41 | | dirkeritg.f |
. . . . . . 7
⊢ 𝐹 = (𝐷‘𝑁) |
42 | 39, 40, 41, 24 | dirkertrigeq 38994 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
43 | 42 | fveq1d 6105 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠)) |
44 | 43 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠)) |
45 | | dirkeritg.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) |
46 | | oveq2 6557 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠)) |
47 | 46 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠))) |
48 | 47 | oveq1d 6564 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘)) |
49 | 48 | sumeq2sdv 14282 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) |
50 | 32, 49 | oveq12d 6567 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) |
51 | 50 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
52 | 51 | cbvmptv 4678 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
53 | 45, 52 | eqtri 2632 |
. . . . . . 7
⊢ 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) |
54 | 53 | oveq2i 6560 |
. . . . . 6
⊢ (ℝ
D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) |
55 | | reelprrecn 9907 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
57 | | recn 9905 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℝ → 𝑠 ∈
ℂ) |
58 | 57 | halfcld 11154 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ → (𝑠 / 2) ∈
ℂ) |
59 | 9 | zcnd 11359 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
61 | 57 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ) |
62 | 60, 61 | mulcld 9939 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ) |
63 | 62 | sincld 14699 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
64 | | 0red 9920 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ) |
65 | | 1red 9934 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ) |
66 | | 0lt1 10429 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 0 < 1) |
68 | | elfzle1 12215 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘) |
69 | 64, 65, 10, 67, 68 | ltletrd 10076 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → 0 < 𝑘) |
70 | 69 | gt0ne0d 10471 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0) |
71 | 70 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0) |
72 | 63, 60, 71 | divcld 10680 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
73 | 8, 72 | fsumcl 14311 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ →
Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
74 | 58, 73 | addcld 9938 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ) |
75 | | picn 24015 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
76 | 75 | a1i 11 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ → π
∈ ℂ) |
77 | 74, 76, 21 | divcld 10680 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ) |
78 | 77 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ) |
79 | 22 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
80 | 74 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ) |
81 | 16 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
82 | 58 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ) |
83 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (1 / 2) ∈
ℝ) |
84 | 57 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℂ) |
85 | | 1red 9934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 1 ∈
ℝ) |
86 | 56 | dvmptid 23526 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1)) |
87 | | 2cnd 10970 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
88 | | 2ne0 10990 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
89 | 88 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ≠ 0) |
90 | 56, 84, 85, 86, 87, 89 | dvmptdivc 23534 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 /
2))) |
91 | 73 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
92 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
93 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
94 | 93 | tgioo2 22414 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
95 | | reopn 38442 |
. . . . . . . . . . 11
⊢ ℝ
∈ (topGen‘ran (,)) |
96 | 95 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(topGen‘ran (,))) |
97 | | fzfid 12634 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
98 | 72 | ancoms 468 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
99 | 98 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ) |
100 | 14 | ancoms 468 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
101 | 100 | recnd 9947 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
102 | 101 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
103 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ,
ℂ}) |
104 | 63 | ancoms 468 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
105 | 59 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ) |
106 | | simpr 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
107 | 105, 106 | mulcld 9939 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ) |
108 | 107 | coscld 14700 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
109 | 105, 108 | mulcld 9939 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
110 | 57, 109 | sylan2 490 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
111 | | ax-resscn 9872 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
⊆ ℂ |
112 | | resmpt 5369 |
. . . . . . . . . . . . . . . . 17
⊢ (ℝ
⊆ ℂ → ((𝑠
∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) |
113 | 111, 112 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) |
114 | 113 | eqcomd 2616 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) |
115 | 114 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))) |
116 | 107 | sincld 14699 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
117 | | eqid 2610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) |
118 | 116, 117 | fmptd 6292 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ) |
119 | 109 | ralrimiva 2949 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ) |
120 | | dmmptg 5549 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑠 ∈
ℂ (𝑘 ·
(cos‘(𝑘 ·
𝑠))) ∈ ℂ →
dom (𝑠 ∈ ℂ
↦ (𝑘 ·
(cos‘(𝑘 ·
𝑠)))) =
ℂ) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ) |
122 | 111, 121 | syl5sseqr 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
123 | | dvsinax 38801 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℂ → (ℂ
D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
124 | 59, 123 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
125 | 124 | dmeqd 5248 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
126 | 122, 125 | sseqtr4d 3605 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D
(𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))))) |
127 | | dvcnre 38804 |
. . . . . . . . . . . . . . 15
⊢ (((𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠))):ℂ⟶ℂ
∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) ↾
ℝ)) |
128 | 118, 126,
127 | syl2anc 691 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦
(sin‘(𝑘 ·
𝑠)))) ↾
ℝ)) |
129 | 124 | reseq1d 5316 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ)) |
130 | | resmpt 5369 |
. . . . . . . . . . . . . . . 16
⊢ (ℝ
⊆ ℂ → ((𝑠
∈ ℂ ↦ (𝑘
· (cos‘(𝑘
· 𝑠)))) ↾
ℝ) = (𝑠 ∈
ℝ ↦ (𝑘 ·
(cos‘(𝑘 ·
𝑠))))) |
131 | 111, 130 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) |
132 | 129, 131 | syl6eq 2660 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
133 | 115, 128,
132 | 3eqtrd 2648 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))) |
134 | 103, 104,
110, 133, 59, 70 | dvmptdivc 23534 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘))) |
135 | 59 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ) |
136 | 70 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0) |
137 | 101, 135,
136 | divcan3d 10685 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠))) |
138 | 137 | mpteq2dva 4672 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
139 | 134, 138 | eqtrd 2644 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
140 | 139 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠)))) |
141 | 94, 93, 56, 96, 97, 99, 102, 140 | dvmptfsum 23542 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦
Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) |
142 | 56, 82, 83, 90, 91, 92, 141 | dvmptadd 23529 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))) |
143 | 75 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ∈
ℂ) |
144 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ≠
0) |
145 | 56, 80, 81, 142, 143, 144 | dvmptdivc 23534 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) +
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
146 | | dirkeritg.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
147 | | dirkeritg.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
148 | 146, 147 | iccssred 38574 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
149 | | iccntr 22432 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
150 | 146, 147,
149 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
151 | 56, 78, 79, 145, 148, 94, 93, 150 | dvmptres2 23531 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
152 | 54, 151 | syl5eq 2656 |
. . . . 5
⊢ (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))) |
153 | 152, 23 | fvmpt2d 6202 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) |
154 | 26, 44, 153 | 3eqtr4d 2654 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑠) = ((ℝ D 𝐺)‘𝑠)) |
155 | 154 | itgeq2dv 23354 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠) |
156 | | dirkeritg.aleb |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
157 | | ioosscn 38563 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℂ |
158 | 157 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
159 | | halfcn 11124 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℂ |
160 | 159 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
161 | | ssid 3587 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
162 | 161 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
163 | 158, 160,
162 | constcncfg 38756 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
164 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ ↦
(cos‘(𝑘 ·
𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) |
165 | | coscn 24003 |
. . . . . . . . . . 11
⊢ cos
∈ (ℂ–cn→ℂ) |
166 | 165 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ)) |
167 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) |
168 | 167 | mulc1cncf 22516 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ)) |
169 | 59, 168 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ)) |
170 | 166, 169 | cncfmpt1f 22524 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
171 | 157 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ) |
172 | 161 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → ℂ ⊆
ℂ) |
173 | 4, 101 | sylan2 490 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ) |
174 | 164, 170,
171, 172, 173 | cncfmptssg 38755 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
175 | 174 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
176 | 158, 97, 175 | fsumcncf 38763 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
177 | 163, 176 | addcncf 38758 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
178 | | eqid 2610 |
. . . . . 6
⊢ (𝑠 ∈ ℂ ↦ π) =
(𝑠 ∈ ℂ ↦
π) |
179 | | cncfmptc 22522 |
. . . . . . . 8
⊢ ((π
∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ (𝑠 ∈ ℂ
↦ π) ∈ (ℂ–cn→ℂ)) |
180 | 75, 161, 161, 179 | mp3an 1416 |
. . . . . . 7
⊢ (𝑠 ∈ ℂ ↦ π)
∈ (ℂ–cn→ℂ) |
181 | 180 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈
(ℂ–cn→ℂ)) |
182 | | difssd 3700 |
. . . . . 6
⊢ (𝜑 → (ℂ ∖ {0})
⊆ ℂ) |
183 | | eldifsn 4260 |
. . . . . . . 8
⊢ (π
∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠
0)) |
184 | 75, 20, 183 | mpbir2an 957 |
. . . . . . 7
⊢ π
∈ (ℂ ∖ {0}) |
185 | 184 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖
{0})) |
186 | 178, 181,
158, 182, 185 | cncfmptssg 38755 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0}))) |
187 | 177, 186 | divcncf 38769 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
188 | 152, 187 | eqeltrd 2688 |
. . 3
⊢ (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
189 | | ioossicc 12130 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
190 | 189 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
191 | | ioombl 23140 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ dom vol |
192 | 191 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
193 | 6 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈
ℝ) |
194 | | fzfid 12634 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin) |
195 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
196 | 148 | sselda 3568 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
197 | 196 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ) |
198 | 195, 197 | remulcld 9949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ) |
199 | 198 | recoscld 14713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ) |
200 | 194, 199 | fsumrecl 14312 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ) |
201 | 193, 200 | readdcld 9948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ) |
202 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → π ∈
ℝ) |
203 | 20 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0) |
204 | 201, 202,
203 | redivcld 10732 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) |
205 | 148, 111 | syl6ss 3580 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
206 | 205, 160,
162 | constcncfg 38756 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
207 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ ↦
Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) |
208 | 170 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
209 | 162, 97, 208 | fsumcncf 38763 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
210 | 200 | recnd 9947 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ) |
211 | 207, 209,
205, 162, 210 | cncfmptssg 38755 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
212 | 206, 211 | addcncf 38758 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
213 | 184 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → π ∈ (ℂ
∖ {0})) |
214 | 205, 213,
182 | constcncfg 38756 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
215 | 212, 214 | divcncf 38769 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
216 | | cniccibl 23413 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
217 | 146, 147,
215, 216 | syl3anc 1318 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
218 | 190, 192,
204, 217 | iblss 23377 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈
𝐿1) |
219 | 152, 218 | eqeltrd 2688 |
. . 3
⊢ (𝜑 → (ℝ D 𝐺) ∈
𝐿1) |
220 | 205, 162 | idcncfg 38757 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
221 | | 2cn 10968 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
222 | | eldifsn 4260 |
. . . . . . . . . 10
⊢ (2 ∈
(ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠
0)) |
223 | 221, 88, 222 | mpbir2an 957 |
. . . . . . . . 9
⊢ 2 ∈
(ℂ ∖ {0}) |
224 | 223 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈ (ℂ ∖
{0})) |
225 | 205, 224,
182 | constcncfg 38756 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
226 | 220, 225 | divcncf 38769 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
227 | | sincn 24002 |
. . . . . . . . . . . 12
⊢ sin
∈ (ℂ–cn→ℂ) |
228 | 227 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ)) |
229 | 228, 169 | cncfmpt1f 22524 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
230 | 229 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ)) |
231 | 205 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ) |
232 | 161 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → ℂ ⊆
ℂ) |
233 | 59 | ad2antlr 759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ) |
234 | 196 | recnd 9947 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
235 | 234 | adantlr 747 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
236 | 233, 235 | mulcld 9939 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ) |
237 | 236 | sincld 14699 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ) |
238 | 117, 230,
231, 232, 237 | cncfmptssg 38755 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
239 | | eldifsn 4260 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (ℂ ∖ {0})
↔ (𝑘 ∈ ℂ
∧ 𝑘 ≠
0)) |
240 | 59, 70, 239 | sylanbrc 695 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖
{0})) |
241 | 240 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖
{0})) |
242 | | difssd 3700 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆
ℂ) |
243 | 231, 241,
242 | constcncfg 38756 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
244 | 238, 243 | divcncf 38769 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
245 | 205, 97, 244 | fsumcncf 38763 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
246 | 226, 245 | addcncf 38758 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
247 | 246, 214 | divcncf 38769 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
248 | 53, 247 | syl5eqel 2692 |
. . 3
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
249 | 146, 147,
156, 188, 219, 248 | ftc2 23611 |
. 2
⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺‘𝐵) − (𝐺‘𝐴))) |
250 | 3, 155, 249 | 3eqtrd 2648 |
1
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ((𝐺‘𝐵) − (𝐺‘𝐴))) |