Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirith2 Structured version   Visualization version   GIF version

Theorem dirith2 25017
 Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to 𝑁. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
dirith2 (𝜑 → (ℙ ∩ 𝑇) ≈ ℕ)

Proof of Theorem dirith2
Dummy variables 𝑛 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 10903 . . . 4 ℕ ∈ V
2 inss1 3795 . . . . 5 (ℙ ∩ 𝑇) ⊆ ℙ
3 prmnn 15226 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
43ssriv 3572 . . . . 5 ℙ ⊆ ℕ
52, 4sstri 3577 . . . 4 (ℙ ∩ 𝑇) ⊆ ℕ
6 ssdomg 7887 . . . 4 (ℕ ∈ V → ((ℙ ∩ 𝑇) ⊆ ℕ → (ℙ ∩ 𝑇) ≼ ℕ))
71, 5, 6mp2 9 . . 3 (ℙ ∩ 𝑇) ≼ ℕ
87a1i 11 . 2 (𝜑 → (ℙ ∩ 𝑇) ≼ ℕ)
9 logno1 24182 . . . 4 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
10 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 𝑁 ∈ ℕ)
1211phicld 15315 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℕ)
1312nnred 10912 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℝ)
1413adantr 480 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
15 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ℙ ∩ 𝑇) ∈ Fin)
16 inss2 3796 . . . . . . . . . 10 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
17 ssfi 8065 . . . . . . . . . 10 (((ℙ ∩ 𝑇) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
1815, 16, 17sylancl 693 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
1916sseli 3564 . . . . . . . . . 10 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) → 𝑛 ∈ (ℙ ∩ 𝑇))
20 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ (ℙ ∩ 𝑇))
215, 20sseldi 3566 . . . . . . . . . . . . 13 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ ℕ)
2221nnrpd 11746 . . . . . . . . . . . 12 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ ℝ+)
23 relogcl 24126 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (log‘𝑛) ∈ ℝ)
2524, 21nndivred 10946 . . . . . . . . . 10 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → ((log‘𝑛) / 𝑛) ∈ ℝ)
2619, 25sylan2 490 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
2718, 26fsumrecl 14312 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ∈ ℝ)
2827adantr 480 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ∈ ℝ)
29 rpssre 11719 . . . . . . . 8 + ⊆ ℝ
3013recnd 9947 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℂ)
31 o1const 14198 . . . . . . . 8 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
3229, 30, 31sylancr 694 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
3329a1i 11 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ℝ+ ⊆ ℝ)
34 1red 9934 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 1 ∈ ℝ)
3515, 25fsumrecl 14312 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛) ∈ ℝ)
36 log1 24136 . . . . . . . . . . . . 13 (log‘1) = 0
3721nnge1d 10940 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 1 ≤ 𝑛)
38 1rp 11712 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
39 logleb 24153 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
4038, 22, 39sylancr 694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
4137, 40mpbid 221 . . . . . . . . . . . . 13 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (log‘1) ≤ (log‘𝑛))
4236, 41syl5eqbrr 4619 . . . . . . . . . . . 12 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 0 ≤ (log‘𝑛))
4324, 22, 42divge0d 11788 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 0 ≤ ((log‘𝑛) / 𝑛))
4416a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇))
4515, 25, 43, 44fsumless 14369 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛))
4645adantr 480 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛))
4733, 28, 34, 35, 46ello1d 14102 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ≤𝑂(1))
48 0red 9920 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 0 ∈ ℝ)
4919, 43sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 0 ≤ ((log‘𝑛) / 𝑛))
5018, 26, 49fsumge0 14368 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))
5150adantr 480 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))
5228, 48, 51o1lo12 14117 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ≤𝑂(1)))
5347, 52mpbird 246 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ 𝑂(1))
5414, 28, 32, 53o1mul2 14203 . . . . . 6 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))) ∈ 𝑂(1))
5513, 27remulcld 9949 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℝ)
5655recnd 9947 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℂ)
5756adantr 480 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℂ)
58 relogcl 24126 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5958adantl 481 . . . . . . . 8 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
6059recnd 9947 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
61 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
62 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
63 rpvmasum.u . . . . . . . . 9 𝑈 = (Unit‘𝑍)
64 rpvmasum.b . . . . . . . . 9 (𝜑𝐴𝑈)
65 rpvmasum.t . . . . . . . . 9 𝑇 = (𝐿 “ {𝐴})
6661, 62, 10, 63, 64, 65rplogsum 25016 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
6766adantr 480 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
6857, 60, 67o1dif 14208 . . . . . 6 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
6954, 68mpbid 221 . . . . 5 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
7069ex 449 . . . 4 (𝜑 → ((ℙ ∩ 𝑇) ∈ Fin → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
719, 70mtoi 189 . . 3 (𝜑 → ¬ (ℙ ∩ 𝑇) ∈ Fin)
72 nnenom 12641 . . . . 5 ℕ ≈ ω
73 sdomentr 7979 . . . . 5 (((ℙ ∩ 𝑇) ≺ ℕ ∧ ℕ ≈ ω) → (ℙ ∩ 𝑇) ≺ ω)
7472, 73mpan2 703 . . . 4 ((ℙ ∩ 𝑇) ≺ ℕ → (ℙ ∩ 𝑇) ≺ ω)
75 isfinite2 8103 . . . 4 ((ℙ ∩ 𝑇) ≺ ω → (ℙ ∩ 𝑇) ∈ Fin)
7674, 75syl 17 . . 3 ((ℙ ∩ 𝑇) ≺ ℕ → (ℙ ∩ 𝑇) ∈ Fin)
7771, 76nsyl 134 . 2 (𝜑 → ¬ (ℙ ∩ 𝑇) ≺ ℕ)
78 bren2 7872 . 2 ((ℙ ∩ 𝑇) ≈ ℕ ↔ ((ℙ ∩ 𝑇) ≼ ℕ ∧ ¬ (ℙ ∩ 𝑇) ≺ ℕ))
798, 77, 78sylanbrc 695 1 (𝜑 → (ℙ ∩ 𝑇) ≈ ℕ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037   “ cima 5041  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≈ cen 7838   ≼ cdom 7839   ≺ csdm 7840  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453  𝑂(1)co1 14065  ≤𝑂(1)clo1 14066  Σcsu 14264  ℙcprime 15223  ϕcphi 15307  Unitcui 18462  ℤRHomczrh 19667  ℤ/nℤczn 19670  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-numer 15281  df-denom 15282  df-phi 15309  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-gim 17524  df-ga 17546  df-cntz 17573  df-oppg 17599  df-od 17771  df-gex 17772  df-pgp 17773  df-lsm 17874  df-pj1 17875  df-cmn 18018  df-abl 18019  df-cyg 18103  df-dprd 18217  df-dpj 18218  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850  df-log 24107  df-cxp 24108  df-em 24519  df-cht 24623  df-vma 24624  df-chp 24625  df-ppi 24626  df-mu 24627  df-dchr 24758 This theorem is referenced by:  dirith  25018
 Copyright terms: Public domain W3C validator