MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirge Structured version   Visualization version   GIF version

Theorem dirge 17060
Description: For any two elements of a directed set, there exists a third element greater than or equal to both. (Note that this does not say that the two elements have a least upper bound.) (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirge.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirge ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋

Proof of Theorem dirge
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirge.1 . . . . . . 7 𝑋 = dom 𝑅
2 dirdm 17057 . . . . . . 7 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2syl5eq 2656 . . . . . 6 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43eleq2d 2673 . . . . 5 (𝑅 ∈ DirRel → (𝐴𝑋𝐴 𝑅))
53eleq2d 2673 . . . . 5 (𝑅 ∈ DirRel → (𝐵𝑋𝐵 𝑅))
64, 5anbi12d 743 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 𝑅𝐵 𝑅)))
7 eqid 2610 . . . . . . . . 9 𝑅 = 𝑅
87isdir 17055 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
98ibi 255 . . . . . . 7 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
109simprrd 793 . . . . . 6 (𝑅 ∈ DirRel → ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))
11 codir 5435 . . . . . 6 (( 𝑅 × 𝑅) ⊆ (𝑅𝑅) ↔ ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
1210, 11sylib 207 . . . . 5 (𝑅 ∈ DirRel → ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
13 breq1 4586 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑅𝑥𝐴𝑅𝑥))
1413anbi1d 737 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝑧𝑅𝑥)))
1514exbidv 1837 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥)))
16 breq1 4586 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑅𝑥𝐵𝑅𝑥))
1716anbi2d 736 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
1817exbidv 1837 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
1915, 18rspc2v 3293 . . . . 5 ((𝐴 𝑅𝐵 𝑅) → (∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
2012, 19syl5com 31 . . . 4 (𝑅 ∈ DirRel → ((𝐴 𝑅𝐵 𝑅) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
216, 20sylbid 229 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
22 reldir 17056 . . . . . . . . . 10 (𝑅 ∈ DirRel → Rel 𝑅)
23 relelrn 5280 . . . . . . . . . 10 ((Rel 𝑅𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2422, 23sylan 487 . . . . . . . . 9 ((𝑅 ∈ DirRel ∧ 𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2524ex 449 . . . . . . . 8 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥 ∈ ran 𝑅))
26 ssun2 3739 . . . . . . . . . . 11 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
27 dmrnssfld 5305 . . . . . . . . . . 11 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2826, 27sstri 3577 . . . . . . . . . 10 ran 𝑅 𝑅
2928, 3syl5sseqr 3617 . . . . . . . . 9 (𝑅 ∈ DirRel → ran 𝑅𝑋)
3029sseld 3567 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑥 ∈ ran 𝑅𝑥𝑋))
3125, 30syld 46 . . . . . . 7 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥𝑋))
3231adantrd 483 . . . . . 6 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → 𝑥𝑋))
3332ancrd 575 . . . . 5 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → (𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
3433eximdv 1833 . . . 4 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
35 df-rex 2902 . . . 4 (∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥) ↔ ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥)))
3634, 35syl6ibr 241 . . 3 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
3721, 36syld 46 . 2 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
38373impib 1254 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  cun 3538  wss 3540   cuni 4372   class class class wbr 4583   I cid 4948   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  Rel wrel 5043  DirRelcdir 17051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-dir 17053
This theorem is referenced by:  tailfb  31542
  Copyright terms: Public domain W3C validator