Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dilsetN | Structured version Visualization version GIF version |
Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dilset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dilset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
dilset.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
dilset.m | ⊢ 𝑀 = (PAut‘𝐾) |
dilset.l | ⊢ 𝐿 = (Dil‘𝐾) |
Ref | Expression |
---|---|
dilsetN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dilset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | dilset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
3 | dilset.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | dilset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
5 | dilset.l | . . . 4 ⊢ 𝐿 = (Dil‘𝐾) | |
6 | 1, 2, 3, 4, 5 | dilfsetN 34457 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
7 | 6 | fveq1d 6105 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐿‘𝐷) = ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷)) |
8 | fveq2 6103 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝑊‘𝑑) = (𝑊‘𝐷)) | |
9 | 8 | sseq2d 3596 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊‘𝑑) ↔ 𝑥 ⊆ (𝑊‘𝐷))) |
10 | 9 | imbi1d 330 | . . . . 5 ⊢ (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
11 | 10 | ralbidv 2969 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥))) |
12 | 11 | rabbidv 3164 | . . 3 ⊢ (𝑑 = 𝐷 → {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
13 | eqid 2610 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | |
14 | fvex 6113 | . . . . 5 ⊢ (PAut‘𝐾) ∈ V | |
15 | 4, 14 | eqeltri 2684 | . . . 4 ⊢ 𝑀 ∈ V |
16 | 15 | rabex 4740 | . . 3 ⊢ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)} ∈ V |
17 | 12, 13, 16 | fvmpt 6191 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
18 | 7, 17 | sylan9eq 2664 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 ⊆ wss 3540 ↦ cmpt 4643 ‘cfv 5804 Atomscatm 33568 PSubSpcpsubsp 33800 WAtomscwpointsN 34290 PAutcpautN 34291 DilcdilN 34406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-dilN 34410 |
This theorem is referenced by: isdilN 34459 |
Copyright terms: Public domain | W3C validator |