Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilsetN Structured version   Visualization version   GIF version

Theorem dilsetN 34458
 Description: The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilsetN ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
Distinct variable groups:   𝑥,𝑓,𝐾   𝑓,𝑀   𝑥,𝑆   𝐷,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓)   𝑆(𝑓)   𝐿(𝑥,𝑓)   𝑀(𝑥)   𝑊(𝑥,𝑓)

Proof of Theorem dilsetN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dilset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 dilset.s . . . 4 𝑆 = (PSubSp‘𝐾)
3 dilset.w . . . 4 𝑊 = (WAtoms‘𝐾)
4 dilset.m . . . 4 𝑀 = (PAut‘𝐾)
5 dilset.l . . . 4 𝐿 = (Dil‘𝐾)
61, 2, 3, 4, 5dilfsetN 34457 . . 3 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
76fveq1d 6105 . 2 (𝐾𝐵 → (𝐿𝐷) = ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷))
8 fveq2 6103 . . . . . . 7 (𝑑 = 𝐷 → (𝑊𝑑) = (𝑊𝐷))
98sseq2d 3596 . . . . . 6 (𝑑 = 𝐷 → (𝑥 ⊆ (𝑊𝑑) ↔ 𝑥 ⊆ (𝑊𝐷)))
109imbi1d 330 . . . . 5 (𝑑 = 𝐷 → ((𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1110ralbidv 2969 . . . 4 (𝑑 = 𝐷 → (∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)))
1211rabbidv 3164 . . 3 (𝑑 = 𝐷 → {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
13 eqid 2610 . . 3 (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
14 fvex 6113 . . . . 5 (PAut‘𝐾) ∈ V
154, 14eqeltri 2684 . . . 4 𝑀 ∈ V
1615rabex 4740 . . 3 {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)} ∈ V
1712, 13, 16fvmpt 6191 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})‘𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
187, 17sylan9eq 2664 1 ((𝐾𝐵𝐷𝐴) → (𝐿𝐷) = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝐷) → (𝑓𝑥) = 𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173   ⊆ wss 3540   ↦ cmpt 4643  ‘cfv 5804  Atomscatm 33568  PSubSpcpsubsp 33800  WAtomscwpointsN 34290  PAutcpautN 34291  DilcdilN 34406 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-dilN 34410 This theorem is referenced by:  isdilN  34459
 Copyright terms: Public domain W3C validator