Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2aN Structured version   Visualization version   GIF version

Theorem dihglblem2aN 35600
Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2aN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2aN
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.t . . 3 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
21a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3 simprr 792 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
4 n0 3890 . . . 4 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
53, 4sylib 207 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ∃𝑧 𝑧𝑆)
6 hllat 33668 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
76ad3antrrr 762 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝐾 ∈ Lat)
8 simplrl 796 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑆𝐵)
9 simpr 476 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑧𝑆)
108, 9sseldd 3569 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑧𝐵)
11 dihglblem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
12 dihglblem.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
1311, 12lhpbase 34302 . . . . . . 7 (𝑊𝐻𝑊𝐵)
1413ad3antlr 763 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → 𝑊𝐵)
15 dihglblem.m . . . . . . 7 = (meet‘𝐾)
1611, 15latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑊𝐵) → (𝑧 𝑊) ∈ 𝐵)
177, 10, 14, 16syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → (𝑧 𝑊) ∈ 𝐵)
18 eqidd 2611 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → (𝑧 𝑊) = (𝑧 𝑊))
19 oveq1 6556 . . . . . . . 8 (𝑣 = 𝑧 → (𝑣 𝑊) = (𝑧 𝑊))
2019eqeq2d 2620 . . . . . . 7 (𝑣 = 𝑧 → ((𝑧 𝑊) = (𝑣 𝑊) ↔ (𝑧 𝑊) = (𝑧 𝑊)))
2120rspcev 3282 . . . . . 6 ((𝑧𝑆 ∧ (𝑧 𝑊) = (𝑧 𝑊)) → ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))
229, 18, 21syl2anc 691 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))
23 ovex 6577 . . . . . 6 (𝑧 𝑊) ∈ V
24 eleq1 2676 . . . . . . 7 (𝑤 = (𝑧 𝑊) → (𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ (𝑧 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}))
25 eqeq1 2614 . . . . . . . . 9 (𝑢 = (𝑧 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑧 𝑊) = (𝑣 𝑊)))
2625rexbidv 3034 . . . . . . . 8 (𝑢 = (𝑧 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)))
2726elrab 3331 . . . . . . 7 ((𝑧 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)))
2824, 27syl6bb 275 . . . . . 6 (𝑤 = (𝑧 𝑊) → (𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊))))
2923, 28spcev 3273 . . . . 5 (((𝑧 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑧 𝑊) = (𝑣 𝑊)) → ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3017, 22, 29syl2anc 691 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
31 n0 3890 . . . 4 ({𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅ ↔ ∃𝑤 𝑤 ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3230, 31sylibr 223 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑧𝑆) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅)
335, 32exlimddv 1850 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ≠ ∅)
342, 33eqnetrd 2849 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  wss 3540  c0 3874  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  glbcglb 16766  meetcmee 16768  Latclat 16868  HLchlt 33655  LHypclh 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292
This theorem is referenced by:  dihglblem3N  35602
  Copyright terms: Public domain W3C validator