MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Visualization version   GIF version

Theorem digit1 12860
Description: Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))

Proof of Theorem digit1
StepHypRef Expression
1 digit2 12859 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
213coml 1264 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
323expa 1257 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
43oveq1d 6564 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)))
5 nnre 10904 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
6 nnnn0 11176 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
7 reexpcl 12739 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
85, 6, 7syl2an 493 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
9 remulcl 9900 . . . . . . . 8 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
108, 9sylan 487 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
11 reflcl 12459 . . . . . . 7 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
13 nnrp 11718 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
1413ad2antrr 758 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ+)
1512, 14modcld 12536 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ)
16 nnexpcl 12735 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℕ)
176, 16sylan2 490 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℕ)
1817nnrpd 11746 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ+)
1918adantr 480 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ+)
20 modge0 12540 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
2112, 14, 20syl2anc 691 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
225ad2antrr 758 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
238adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) ∈ ℝ)
24 modlt 12541 . . . . . . 7 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
2512, 14, 24syl2anc 691 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < 𝐵)
26 nncn 10905 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
27 exp1 12728 . . . . . . . . . 10 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵↑1) = 𝐵)
2928adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) = 𝐵)
305adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ)
31 nnge1 10923 . . . . . . . . . 10 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
3231adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 1 ≤ 𝐵)
33 simpr 476 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
34 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
3533, 34syl6eleq 2698 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ (ℤ‘1))
36 leexp2a 12778 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝐾 ∈ (ℤ‘1)) → (𝐵↑1) ≤ (𝐵𝐾))
3730, 32, 35, 36syl3anc 1318 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑1) ≤ (𝐵𝐾))
3829, 37eqbrtrrd 4607 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ≤ (𝐵𝐾))
3938adantr 480 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (𝐵𝐾))
4015, 22, 23, 25, 39ltletrd 10076 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))
41 modid 12557 . . . . 5 (((((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) ∧ (0 ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) ∧ ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) < (𝐵𝐾))) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
4215, 19, 21, 40, 41syl22anc 1319 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) mod (𝐵𝐾)) = ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵))
43 simpll 786 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℕ)
44 nnm1nn0 11211 . . . . . . . . 9 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
45 reexpcl 12739 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
465, 44, 45syl2an 493 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℝ)
47 remulcl 9900 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
4846, 47sylan 487 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ)
49 nnexpcl 12735 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5044, 49sylan2 490 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
5150adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℕ)
52 modmulnn 12550 . . . . . . 7 ((𝐵 ∈ ℕ ∧ ((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ ∧ (𝐵↑(𝐾 − 1)) ∈ ℕ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
5343, 48, 51, 52syl3anc 1318 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))) ≤ ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
54 expm1t 12750 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = ((𝐵↑(𝐾 − 1)) · 𝐵))
55 expcl 12740 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
5644, 55sylan2 490 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
57 simpl 472 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℂ)
5856, 57mulcomd 9940 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐵) = (𝐵 · (𝐵↑(𝐾 − 1))))
5954, 58eqtrd 2644 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6026, 59sylan 487 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6160adantr 480 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵𝐾) = (𝐵 · (𝐵↑(𝐾 − 1))))
6261oveq2d 6565 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) = ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
6361oveq1d 6564 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴))
6426ad2antrr 758 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
6526, 44, 55syl2an 493 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
6665adantr 480 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵↑(𝐾 − 1)) ∈ ℂ)
67 recn 9905 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6867adantl 481 . . . . . . . . . 10 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
6964, 66, 68mulassd 9942 . . . . . . . . 9 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (𝐵↑(𝐾 − 1))) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7063, 69eqtrd 2644 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) = (𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴)))
7170fveq2d 6107 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵𝐾) · 𝐴)) = (⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))))
7271, 61oveq12d 6567 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) = ((⌊‘(𝐵 · ((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵 · (𝐵↑(𝐾 − 1)))))
7353, 62, 723brtr4d 4615 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)))
74 reflcl 12459 . . . . . . . 8 (((𝐵↑(𝐾 − 1)) · 𝐴) ∈ ℝ → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
7548, 74syl 17 . . . . . . 7 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ)
76 remulcl 9900 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)) ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
7722, 75, 76syl2anc 691 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ)
78 modsubdir 12601 . . . . . 6 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
7912, 77, 19, 78syl3anc 1318 . . . . 5 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)) ≤ ((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) ↔ (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾)))))
8073, 79mpbid 221 . . . 4 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → (((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))) mod (𝐵𝐾)) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
814, 42, 803eqtr3d 2652 . . 3 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
82813impa 1251 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
83823comr 1265 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵𝐾) · 𝐴)) mod (𝐵𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cuz 11563  +crp 11708  cfl 12453   mod cmo 12530  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator