Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig0 Structured version   Visualization version   GIF version

Theorem dig0 42198
Description: All digits of 0 are 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
dig0 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)

Proof of Theorem dig0
StepHypRef Expression
1 0e0icopnf 12153 . . 3 0 ∈ (0[,)+∞)
2 digval 42190 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
31, 2mp3an3 1405 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵))
4 nncn 10905 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ∈ ℂ)
6 nnne0 10930 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantr 480 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐵 ≠ 0)
8 znegcl 11289 . . . . . . . . 9 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
98adantl 481 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -𝐾 ∈ ℤ)
105, 7, 9expclzd 12875 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐵↑-𝐾) ∈ ℂ)
1110mul01d 10114 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐵↑-𝐾) · 0) = 0)
1211fveq2d 6107 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = (⌊‘0))
13 0zd 11266 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 0 ∈ ℤ)
14 flid 12471 . . . . . 6 (0 ∈ ℤ → (⌊‘0) = 0)
1513, 14syl 17 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘0) = 0)
1612, 15eqtrd 2644 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (⌊‘((𝐵↑-𝐾) · 0)) = 0)
1716oveq1d 6564 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = (0 mod 𝐵))
18 nnrp 11718 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
19 0mod 12563 . . . . 5 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
2018, 19syl 17 . . . 4 (𝐵 ∈ ℕ → (0 mod 𝐵) = 0)
2120adantr 480 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (0 mod 𝐵) = 0)
2217, 21eqtrd 2644 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((⌊‘((𝐵↑-𝐾) · 0)) mod 𝐵) = 0)
233, 22eqtrd 2644 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  +∞cpnf 9950  -cneg 10146  cn 10897  cz 11254  +crp 11708  [,)cico 12048  cfl 12453   mod cmo 12530  cexp 12722  digitcdig 42187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-dig 42188
This theorem is referenced by:  0dig2pr01  42202  nn0sumshdiglem1  42213
  Copyright terms: Public domain W3C validator