Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diffiunisros Structured version   Visualization version   GIF version

Theorem diffiunisros 29569
Description: In semiring of sets, complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
issros.1 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
diffiunisros ((𝑆𝑁𝐴𝑆𝐵𝑆) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑥,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem diffiunisros
StepHypRef Expression
1 simp2 1055 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → 𝐴𝑆)
2 simp3 1056 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → 𝐵𝑆)
3 issros.1 . . . . . 6 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
43issros 29565 . . . . 5 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
54simp3bi 1071 . . . 4 (𝑆𝑁 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
653ad2ant1 1075 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
7 ineq1 3769 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
87eleq1d 2672 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ 𝑆 ↔ (𝐴𝑦) ∈ 𝑆))
9 difeq1 3683 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
109eqeq1d 2612 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑦) = 𝑧 ↔ (𝐴𝑦) = 𝑧))
11103anbi3d 1397 . . . . . 6 (𝑥 = 𝐴 → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ (𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)))
1211rexbidv 3034 . . . . 5 (𝑥 = 𝐴 → (∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)))
138, 12anbi12d 743 . . . 4 (𝑥 = 𝐴 → (((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)) ↔ ((𝐴𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧))))
14 ineq2 3770 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
1514eleq1d 2672 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ 𝑆 ↔ (𝐴𝐵) ∈ 𝑆))
16 difeq2 3684 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
1716eqeq1d 2612 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑦) = 𝑧 ↔ (𝐴𝐵) = 𝑧))
18173anbi3d 1397 . . . . . 6 (𝑦 = 𝐵 → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧) ↔ (𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
1918rexbidv 3034 . . . . 5 (𝑦 = 𝐵 → (∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
2015, 19anbi12d 743 . . . 4 (𝑦 = 𝐵 → (((𝐴𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)) ↔ ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧))))
2113, 20rspc2va 3294 . . 3 (((𝐴𝑆𝐵𝑆) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))) → ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
221, 2, 6, 21syl21anc 1317 . 2 ((𝑆𝑁𝐴𝑆𝐵𝑆) → ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
2322simprd 478 1 ((𝑆𝑁𝐴𝑆𝐵𝑆) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cdif 3537  cin 3539  c0 3874  𝒫 cpw 4108   cuni 4372  Disj wdisj 4553  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-pw 4110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator