 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difabs Structured version   Visualization version   GIF version

Theorem difabs 3851
 Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 3846 . 2 (𝐴 ∖ (𝐵𝐵)) = ((𝐴𝐵) ∖ 𝐵)
2 unidm 3718 . . 3 (𝐵𝐵) = 𝐵
32difeq2i 3687 . 2 (𝐴 ∖ (𝐵𝐵)) = (𝐴𝐵)
41, 3eqtr3i 2634 1 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∖ cdif 3537   ∪ cun 3538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547 This theorem is referenced by:  axcclem  9162  lpdifsn  20757  compne  37665
 Copyright terms: Public domain W3C validator