MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1card Structured version   Visualization version   GIF version

Theorem dif1card 8716
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dif1card ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))

Proof of Theorem dif1card
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 diffi 8077 . . 3 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
2 isfi 7865 . . . 4 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚)
3 simp3 1056 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚)
4 en2sn 7922 . . . . . . . . . . . 12 ((𝑋𝐴𝑚 ∈ ω) → {𝑋} ≈ {𝑚})
543adant3 1074 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚})
6 incom 3767 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
7 disjdif 3992 . . . . . . . . . . . . 13 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
86, 7eqtri 2632 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
98a1i 11 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
10 nnord 6965 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
11 ordirr 5658 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
13 disjsn 4192 . . . . . . . . . . . . 13 ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚𝑚)
1412, 13sylibr 223 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
15143ad2ant2 1076 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅)
16 unen 7925 . . . . . . . . . . 11 ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
173, 5, 9, 15, 16syl22anc 1319 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
18 difsnid 4282 . . . . . . . . . . . 12 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
19 df-suc 5646 . . . . . . . . . . . . . 14 suc 𝑚 = (𝑚 ∪ {𝑚})
2019eqcomi 2619 . . . . . . . . . . . . 13 (𝑚 ∪ {𝑚}) = suc 𝑚
2120a1i 11 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚)
2218, 21breq12d 4596 . . . . . . . . . . 11 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
23223ad2ant1 1075 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
2417, 23mpbid 221 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚)
25 peano2 6978 . . . . . . . . . 10 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
26253ad2ant2 1076 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω)
27 cardennn 8692 . . . . . . . . 9 ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚)
2824, 26, 27syl2anc 691 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚)
29 cardennn 8692 . . . . . . . . . . 11 (((𝐴 ∖ {𝑋}) ≈ 𝑚𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
3029ancoms 468 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
31303adant1 1072 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
32 suceq 5707 . . . . . . . . 9 ((card‘(𝐴 ∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3331, 32syl 17 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3428, 33eqtr4d 2647 . . . . . . 7 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
35343expib 1260 . . . . . 6 (𝑋𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3635com12 32 . . . . 5 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3736rexlimiva 3010 . . . 4 (∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
382, 37sylbi 206 . . 3 ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
391, 38syl 17 . 2 (𝐴 ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
4039imp 444 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cdif 3537  cun 3538  cin 3539  c0 3874  {csn 4125   class class class wbr 4583  Ord word 5639  suc csuc 5642  cfv 5804  ωcom 6957  cen 7838  Fincfn 7841  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator