Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelvalN | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibval.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval.j | ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
dibval.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibopelvalN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dibval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | dibval.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
5 | dibval.j | . . . 4 ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) | |
6 | dibval.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | dibval 35449 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) |
8 | 7 | eleq2d 2673 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }))) |
9 | opelxp 5070 | . . 3 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 })) | |
10 | fvex 6113 | . . . . . . . 8 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
11 | 3, 10 | eqeltri 2684 | . . . . . . 7 ⊢ 𝑇 ∈ V |
12 | 11 | mptex 6390 | . . . . . 6 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
13 | 4, 12 | eqeltri 2684 | . . . . 5 ⊢ 0 ∈ V |
14 | 13 | elsn2 4158 | . . . 4 ⊢ (𝑆 ∈ { 0 } ↔ 𝑆 = 0 ) |
15 | 14 | anbi2i 726 | . . 3 ⊢ ((𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
16 | 9, 15 | bitri 263 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ ((𝐽‘𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 )) |
17 | 8, 16 | syl6bb 275 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 〈cop 4131 ↦ cmpt 4643 I cid 4948 × cxp 5036 dom cdm 5038 ↾ cres 5040 ‘cfv 5804 Basecbs 15695 LHypclh 34288 LTrncltrn 34405 DIsoAcdia 35335 DIsoBcdib 35445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-dib 35446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |