Step | Hyp | Ref
| Expression |
1 | | dibval.i |
. . 3
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
2 | | dibval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | dibval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 2, 3 | dibffval 35447 |
. . . 4
⊢ (𝐾 ∈ 𝑉 → (DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) |
5 | 4 | fveq1d 6105 |
. . 3
⊢ (𝐾 ∈ 𝑉 → ((DIsoB‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊)) |
6 | 1, 5 | syl5eq 2656 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐼 = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊)) |
7 | | fveq2 6103 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊)) |
8 | | dibval.j |
. . . . . 6
⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
9 | 7, 8 | syl6eqr 2662 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐽) |
10 | 9 | dmeqd 5248 |
. . . 4
⊢ (𝑤 = 𝑊 → dom ((DIsoA‘𝐾)‘𝑤) = dom 𝐽) |
11 | 9 | fveq1d 6105 |
. . . . 5
⊢ (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘𝑥) = (𝐽‘𝑥)) |
12 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
13 | | dibval.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | 12, 13 | syl6eqr 2662 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇) |
15 | | eqidd 2611 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) |
16 | 14, 15 | mpteq12dv 4663 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵))) |
17 | | dibval.o |
. . . . . . 7
⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
18 | 16, 17 | syl6eqr 2662 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = 0 ) |
19 | 18 | sneqd 4137 |
. . . . 5
⊢ (𝑤 = 𝑊 → {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))} = { 0 }) |
20 | 11, 19 | xpeq12d 5064 |
. . . 4
⊢ (𝑤 = 𝑊 → ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}) = ((𝐽‘𝑥) × { 0 })) |
21 | 10, 20 | mpteq12dv 4663 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
22 | | eqid 2610 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) |
23 | | fvex 6113 |
. . . . . 6
⊢
((DIsoA‘𝐾)‘𝑊) ∈ V |
24 | 8, 23 | eqeltri 2684 |
. . . . 5
⊢ 𝐽 ∈ V |
25 | 24 | dmex 6991 |
. . . 4
⊢ dom 𝐽 ∈ V |
26 | 25 | mptex 6390 |
. . 3
⊢ (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 })) ∈
V |
27 | 21, 22, 26 | fvmpt 6191 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |
28 | 6, 27 | sylan9eq 2664 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) |