Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st2N Structured version   Visualization version   GIF version

Theorem dibelval1st2N 35458
 Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibelval1st2.b 𝐵 = (Base‘𝐾)
dibelval1st2.l = (le‘𝐾)
dibelval1st2.h 𝐻 = (LHyp‘𝐾)
dibelval1st2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibelval1st2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibelval1st2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st2N (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)

Proof of Theorem dibelval1st2N
StepHypRef Expression
1 dibelval1st2.b . . 3 𝐵 = (Base‘𝐾)
2 dibelval1st2.l . . 3 = (le‘𝐾)
3 dibelval1st2.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2610 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
5 dibelval1st2.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dibelval1st 35456 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7 dibelval1st2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dibelval1st2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
91, 2, 3, 7, 8, 4diatrl 35351 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
106, 9syld3an3 1363 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (𝑅‘(1st𝑌)) 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  1st c1st 7057  Basecbs 15695  lecple 15775  LHypclh 34288  LTrncltrn 34405  trLctrl 34463  DIsoAcdia 35335  DIsoBcdib 35445 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-disoa 35336  df-dib 35446 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator