Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval1st Structured version   Visualization version   GIF version

Theorem dibelval1st 35456
 Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
dibelval1.b 𝐵 = (Base‘𝐾)
dibelval1.l = (le‘𝐾)
dibelval1.h 𝐻 = (LHyp‘𝐾)
dibelval1.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibelval1.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval1st (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (𝐽𝑋))

Proof of Theorem dibelval1st
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dibelval1.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibelval1.l . . . . 5 = (le‘𝐾)
3 dibelval1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2610 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2610 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 dibelval1.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
7 dibelval1.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 35451 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
98eleq2d 2673 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
109biimp3a 1424 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → 𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
11 xp1st 7089 . 2 (𝑌 ∈ ((𝐽𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → (1st𝑌) ∈ (𝐽𝑋))
1210, 11syl 17 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑌 ∈ (𝐼𝑋)) → (1st𝑌) ∈ (𝐽𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   I cid 4948   × cxp 5036   ↾ cres 5040  ‘cfv 5804  1st c1st 7057  Basecbs 15695  lecple 15775  LHypclh 34288  LTrncltrn 34405  DIsoAcdia 35335  DIsoBcdib 35445 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-disoa 35336  df-dib 35446 This theorem is referenced by:  dibelval1st1  35457  dibelval1st2N  35458  diblss  35477
 Copyright terms: Public domain W3C validator