Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibeldmN | Structured version Visualization version GIF version |
Description: Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibfn.b | ⊢ 𝐵 = (Base‘𝐾) |
dibfn.l | ⊢ ≤ = (le‘𝐾) |
dibfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibfn.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibeldmN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2610 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
3 | dibfn.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | dibdiadm 35462 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊)) |
5 | 4 | eleq2d 2673 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))) |
6 | dibfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | dibfn.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7, 1, 2 | diaeldm 35343 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
9 | 5, 8 | bitrd 267 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 Basecbs 15695 lecple 15775 LHypclh 34288 DIsoAcdia 35335 DIsoBcdib 35445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-disoa 35336 df-dib 35446 |
This theorem is referenced by: dibf11N 35468 dibintclN 35474 dihmeetlem2N 35606 |
Copyright terms: Public domain | W3C validator |