Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 35337
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
diaffval (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Distinct variable groups:   𝑥,𝑤,𝑦,   𝑤,𝐵,𝑥,𝑦   𝑤,𝐻   𝑤,𝑓,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑓)   𝐻(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem diaffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6103 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2662 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6103 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 diaval.b . . . . . . 7 𝐵 = (Base‘𝐾)
75, 6syl6eqr 2662 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6103 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 diaval.l . . . . . . . 8 = (le‘𝐾)
108, 9syl6eqr 2662 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 4594 . . . . . 6 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑤𝑦 𝑤))
127, 11rabeqbidv 3168 . . . . 5 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} = {𝑦𝐵𝑦 𝑤})
13 fveq2 6103 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1413fveq1d 6105 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
15 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1615fveq1d 6105 . . . . . . . 8 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1716fveq1d 6105 . . . . . . 7 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
18 eqidd 2611 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
1917, 10, 18breq123d 4597 . . . . . 6 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 ↔ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥))
2014, 19rabeqbidv 3168 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} = {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})
2112, 20mpteq12dv 4663 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
224, 21mpteq12dv 4663 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
23 df-disoa 35336 . . 3 DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
24 fvex 6113 . . . . 5 (LHyp‘𝐾) ∈ V
253, 24eqeltri 2684 . . . 4 𝐻 ∈ V
2625mptex 6390 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})) ∈ V
2722, 23, 26fvmpt 6191 . 2 (𝐾 ∈ V → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
281, 27syl 17 1 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  Basecbs 15695  lecple 15775  LHypclh 34288  LTrncltrn 34405  trLctrl 34463  DIsoAcdia 35335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-disoa 35336
This theorem is referenced by:  diafval  35338
  Copyright terms: Public domain W3C validator