Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0eldmN Structured version   Visualization version   GIF version

Theorem dia0eldmN 35347
 Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia0eldm.z 0 = (0.‘𝐾)
dia0eldm.h 𝐻 = (LHyp‘𝐾)
dia0eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)

Proof of Theorem dia0eldmN
StepHypRef Expression
1 hlop 33667 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ OP)
3 eqid 2610 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 dia0eldm.z . . . 4 0 = (0.‘𝐾)
53, 4op0cl 33489 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
62, 5syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐾))
7 dia0eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
83, 7lhpbase 34302 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
9 eqid 2610 . . . 4 (le‘𝐾) = (le‘𝐾)
103, 9, 4op0le 33491 . . 3 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊)
111, 8, 10syl2an 493 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
12 dia0eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
133, 9, 7, 12diaeldm 35343 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)))
146, 11, 13mpbir2and 959 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  dom cdm 5038  ‘cfv 5804  Basecbs 15695  lecple 15775  0.cp0 16860  OPcops 33477  HLchlt 33655  LHypclh 34288  DIsoAcdia 35335 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-glb 16798  df-p0 16862  df-oposet 33481  df-ol 33483  df-oml 33484  df-hlat 33656  df-lhyp 34292  df-disoa 35336 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator