MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq Structured version   Visualization version   GIF version

Theorem dgreq 23804
Description: If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgreq.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgreq.2 (𝜑𝑁 ∈ ℕ0)
dgreq.3 (𝜑𝐴:ℕ0⟶ℂ)
dgreq.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
dgreq.5 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dgreq.6 (𝜑 → (𝐴𝑁) ≠ 0)
Assertion
Ref Expression
dgreq (𝜑 → (deg‘𝐹) = 𝑁)
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem dgreq
StepHypRef Expression
1 dgreq.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgreq.2 . . 3 (𝜑𝑁 ∈ ℕ0)
3 dgreq.3 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
4 elfznn0 12302 . . . 4 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5 ffvelrn 6265 . . . 4 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
63, 4, 5syl2an 493 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
7 dgreq.5 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
81, 2, 6, 7dgrle 23803 . 2 (𝜑 → (deg‘𝐹) ≤ 𝑁)
9 dgreq.4 . . . . . 6 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
101, 2, 3, 9, 7coeeq 23787 . . . . 5 (𝜑 → (coeff‘𝐹) = 𝐴)
1110fveq1d 6105 . . . 4 (𝜑 → ((coeff‘𝐹)‘𝑁) = (𝐴𝑁))
12 dgreq.6 . . . 4 (𝜑 → (𝐴𝑁) ≠ 0)
1311, 12eqnetrd 2849 . . 3 (𝜑 → ((coeff‘𝐹)‘𝑁) ≠ 0)
14 eqid 2610 . . . 4 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2610 . . . 4 (deg‘𝐹) = (deg‘𝐹)
1614, 15dgrub 23794 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘𝐹))
171, 2, 13, 16syl3anc 1318 . 2 (𝜑𝑁 ≤ (deg‘𝐹))
18 dgrcl 23793 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
191, 18syl 17 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℕ0)
2019nn0red 11229 . . 3 (𝜑 → (deg‘𝐹) ∈ ℝ)
212nn0red 11229 . . 3 (𝜑𝑁 ∈ ℝ)
2220, 21letri3d 10058 . 2 (𝜑 → ((deg‘𝐹) = 𝑁 ↔ ((deg‘𝐹) ≤ 𝑁𝑁 ≤ (deg‘𝐹))))
238, 17, 22mpbir2and 959 1 (𝜑 → (deg‘𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  {csn 4125   class class class wbr 4583  cmpt 4643  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  0cn0 11169  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  coe1termlem  23818  basellem2  24608
  Copyright terms: Public domain W3C validator