Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3i Structured version   Visualization version   GIF version

Theorem dfvd3i 37829
Description: Inference form of dfvd3 37828. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd3i.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
Assertion
Ref Expression
dfvd3i (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem dfvd3i
StepHypRef Expression
1 dfvd3i.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 dfvd3 37828 . 2 ((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
31, 2mpbi 219 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd3 37824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-vd3 37827
This theorem is referenced by:  in3  37855  in3an  37857  gen31  37867  e333  37981  e233  38013  e323  38014
  Copyright terms: Public domain W3C validator