Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd3an Structured version   Visualization version   GIF version

Theorem dfvd3an 37831
 Description: Definition of a 3-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfvd3an ((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))

Proof of Theorem dfvd3an
StepHypRef Expression
1 df-vd1 37807 . 2 ((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((   𝜑   ,   𝜓   ,   𝜒   )𝜃))
2 df-vhc3 37826 . . 3 ((   𝜑   ,   𝜓   ,   𝜒   ) ↔ (𝜑𝜓𝜒))
32imbi1i 338 . 2 (((   𝜑   ,   𝜓   ,   𝜒   )𝜃) ↔ ((𝜑𝜓𝜒) → 𝜃))
41, 3bitri 263 1 ((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031  (   wvd1 37806  (   wvhc3 37825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-vd1 37807  df-vhc3 37826 This theorem is referenced by:  dfvd3ani  37832  dfvd3anir  37833
 Copyright terms: Public domain W3C validator