Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd1impr Structured version   Visualization version   GIF version

Theorem dfvd1impr 37813
Description: Right-to-left part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfvd1impr ((𝜑𝜓) → (   𝜑   ▶   𝜓   ))

Proof of Theorem dfvd1impr
StepHypRef Expression
1 df-vd1 37807 . 2 ((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
21biimpri 217 1 ((𝜑𝜓) → (   𝜑   ▶   𝜓   ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 37806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-vd1 37807
This theorem is referenced by:  gen11  37862
  Copyright terms: Public domain W3C validator