Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss2f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss2f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3557 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | |
2 | dfss2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2745 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | dfss2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2745 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfim 1813 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) |
7 | nfv 1830 | . . 3 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
8 | eleq1 2676 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
9 | eleq1 2676 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
10 | 8, 9 | imbi12d 333 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
11 | 6, 7, 10 | cbval 2259 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
12 | 1, 11 | bitri 263 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∈ wcel 1977 Ⅎwnfc 2738 ⊆ wss 3540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-in 3547 df-ss 3554 |
This theorem is referenced by: dfss3f 3560 ssrd 3573 ss2ab 3633 rankval4 8613 ssrmo 28718 rabexgfGS 28725 ballotth 29926 dvcosre 38799 itgsinexplem1 38845 |
Copyright terms: Public domain | W3C validator |