Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrcl4 Structured version   Visualization version   GIF version

Theorem dfrcl4 36987
 Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.)
Assertion
Ref Expression
dfrcl4 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrcl4
StepHypRef Expression
1 dfrcl3 36986 . 2 r* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
2 df-pr 4128 . . . . 5 {0, 1} = ({0} ∪ {1})
3 iuneq1 4470 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛))
42, 3ax-mp 5 . . . 4 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛)
5 iunxun 4541 . . . 4 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛))
6 c0ex 9913 . . . . . 6 0 ∈ V
7 oveq2 6557 . . . . . 6 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
86, 7iunxsn 4539 . . . . 5 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
9 1ex 9914 . . . . . 6 1 ∈ V
10 oveq2 6557 . . . . . 6 (𝑛 = 1 → (𝑟𝑟𝑛) = (𝑟𝑟1))
119, 10iunxsn 4539 . . . . 5 𝑛 ∈ {1} (𝑟𝑟𝑛) = (𝑟𝑟1)
128, 11uneq12i 3727 . . . 4 ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
134, 5, 123eqtri 2636 . . 3 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
1413mpteq2i 4669 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
151, 14eqtr4i 2635 1 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  Vcvv 3173   ∪ cun 3538  {csn 4125  {cpr 4127  ∪ ciun 4455   ↦ cmpt 4643  (class class class)co 6549  0cc0 9815  1c1 9816  ↑𝑟crelexp 13608  r*crcl 36983 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-relexp 13609  df-rcl 36984 This theorem is referenced by:  brfvrcld  37002  fvrcllb0d  37004  fvrcllb0da  37005  fvrcllb1d  37006  corclrcl  37018  corcltrcl  37050  cotrclrcl  37053
 Copyright terms: Public domain W3C validator