Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3ss Structured version   Visualization version   GIF version

Theorem dfrab3ss 3864
 Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
Assertion
Ref Expression
dfrab3ss (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3ss
StepHypRef Expression
1 df-ss 3554 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ineq1 3769 . . . 4 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑}))
32eqcomd 2616 . . 3 ((𝐴𝐵) = 𝐴 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
41, 3sylbi 206 . 2 (𝐴𝐵 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
5 dfrab3 3861 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
6 dfrab3 3861 . . . 4 {𝑥𝐵𝜑} = (𝐵 ∩ {𝑥𝜑})
76ineq2i 3773 . . 3 (𝐴 ∩ {𝑥𝐵𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
8 inass 3785 . . 3 ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
97, 8eqtr4i 2635 . 2 (𝐴 ∩ {𝑥𝐵𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑})
104, 5, 93eqtr4g 2669 1 (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  {cab 2596  {crab 2900   ∩ cin 3539   ⊆ wss 3540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-in 3547  df-ss 3554 This theorem is referenced by:  cusgrasizeindslem1  26002  mbfposadd  32627  proot1hash  36797
 Copyright terms: Public domain W3C validator