MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopif Structured version   Visualization version   GIF version

Theorem dfopif 4337
Description: Rewrite df-op 4132 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Assertion
Ref Expression
dfopif 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)

Proof of Theorem dfopif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-op 4132 . 2 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 df-3an 1033 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
32abbii 2726 . 2 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
4 iftrue 4042 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}})
5 ibar 524 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
65abbi2dv 2729 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
74, 6eqtr2d 2645 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
8 pm2.21 119 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑥 ∈ ∅))
98adantrd 483 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → 𝑥 ∈ ∅))
109abssdv 3639 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅)
11 ss0 3926 . . . . 5 ({𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅ → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
1210, 11syl 17 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
13 iffalse 4045 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅)
1412, 13eqtr4d 2647 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
157, 14pm2.61i 175 . 2 {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
161, 3, 153eqtri 2636 1 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  {csn 4125  {cpr 4127  cop 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-op 4132
This theorem is referenced by:  dfopg  4338  opeq1  4340  opeq2  4341  nfop  4356  csbopg  4358  opprc  4362  opex  4859
  Copyright terms: Public domain W3C validator