Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnf5 | Structured version Visualization version GIF version |
Description: Characterization of non-freeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
dfnf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1696 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | imbi1i 338 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥𝜑)) |
3 | pm4.64 386 | . . 3 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) | |
4 | 2, 3 | bitri 263 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) |
5 | df-nf 1701 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
6 | ab0 3905 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
7 | abv 3179 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | |
8 | 6, 7 | orbi12i 542 | . 2 ⊢ (({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) |
9 | 4, 5, 8 | 3bitr4i 291 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∀wal 1473 = wceq 1475 ∃wex 1695 Ⅎwnf 1699 {cab 2596 Vcvv 3173 ∅c0 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-nul 3875 |
This theorem is referenced by: ab0orv 3907 |
Copyright terms: Public domain | W3C validator |